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Abstract

Model matching algorithms are used to identify common elements in input models, which is a fundamental precondition for
many software engineering tasks, such as merging software variants or views. If there are multiple input models, an n-way
matching algorithm that simultaneously processes all models typically produces better results than the sequential application
of two-way matching algorithms. However, existing algorithms for n-way matching do not scale well, as the computational
effort grows fast in the number of models and their size. We propose a scalable n-way model matching algorithm, which
uses multi-dimensional search trees for efficiently finding suitable match candidates through range queries. We implemented
our generic algorithm named RaQuN (Range Queries on N input models) in Java and empirically evaluate the matching
quality and runtime performance on several datasets of different origins and model types. Compared to the state of the art,
our experimental results show a performance improvement by an order of magnitude, while delivering matching results of

better quality.

Keywords Model-driven engineering - n-Way model matching - Clone-and-own development - Software product lines

1 Introduction

Matching algorithms are an essential requirement for detect-
ing common parts of development artifacts in many software
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engineering activities. In domains where model-driven devel-
opment has been adopted in practice, such as automotive,
avionics, and automation engineering, numerous model vari-
ants emerge from cloning existing models [1-3]. Integrating
such autonomous variants into a centrally managed software
product line in extractive software product-line engineering
[4] requires to detect similarities and differences between
them, which in turn requires to match the corresponding
model elements of the variants. Moreover, finding the correct
location for a patch application is a non-trivial task in model
patching [5], which might be done more precisely using n-
way matching. Matching algorithms could also be used to
find the correct location for the application of patches when
synchronizing multiple variants in clone-and-own develop-
ment [6]. Here, a matching-based patching technique might
be more suitable than the context-based techniques imple-
mented in version control systems [7], as variants have
deliberate differences that make it difficult to find a fitting
context. Lastly, matching algorithms are an indispensable
basis for merging parallel lines of development [8], or for
consolidating individual views to gain a unified perspective
of a multi-view system [9].

Currently, almost all existing matching algorithms can
only process two development artifacts [10-21], whereas the
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Fig.1 Symbolic illustration of the limitations of existing n-way match-
ing solutions and the need for further research.

aforementioned activities typically require to identify corre-
sponding elements in multiple (i.e., n > 2) input models.
A few approaches calculate an n-way matching by repeated
two-way matching of the input artifacts [22-27]. In each step,
the resulting two-way correspondences are simply linked
together to form correspondence groups or matches (aka.
tuples [28]).

However, sequential two-way matching of models may
yield sub-optimal or even incorrect results because not all
input artifacts are considered at the same time [28]. The order
in which input models are processed influences the quality of
the matching because better match candidates may be found
after an element has already been matched. An order might
be determinable if a reference model is given, but this is typi-
cally not the case [9,22,29-33]. An optimal processing order
cannot be anticipated and applying all n! possible orders for
n input models is clearly not feasible [24].

The only matching approach which simultaneously pro-
cesses n input models is a heuristic algorithm called NwM by
Rubin and Chechik [28]. NwM delivers n-way matchings of
better quality than sequential two-way matching. However,
we faced scalability problems when applying NwM to mod-
els of realistic size, comprising hundreds or even thousands
of elements. The most likely reason for this is the required
number of model element comparisons, which often leads to
performance problems even in the case of few input models
if these models are large [34-36].

The limitations of existing solutions are symbolically
illustrated in Fig. 1.

By applying sequential two-way matching, n-way match-
ing can be done for both large models and large sets of
models, but scalability comes at the price of quality. NwM
delivers n-way matchings of better quality, but does not scale
for large models, even if the number of model variants is lim-
ited to only a few. Thus, there is a strong need for a scalable
n-way matching solution.
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In our MODELS paper [37], we proposed RaQuN (Range
Queries on N input models), a generic, heuristic n-way model
matching algorithm. As illustrated in Fig. 1, RaQuN tar-
gets practical scenarios in which several models are to be
matched that each comprises a large number of elements.
The key idea behind RaQuN is to map the elements of all
input models to points in a numerical vector space. RaQuN
embeds a multi-dimensional search tree into this vector
space to efficiently find nearest neighbors of elements, i.e.,
those elements which are most similar to a given element.
By comparing an element only with its nearest neighbors,
RaQuN can reduce the number of required comparisons con-
siderably. For our empirical assessment, we used datasets
from different domains and development scenarios. Next
to academic and synthetic models [28,38], we investigated
variants generated from model-based product lines [39-42],
and reverse-engineered models from clone-and-own devel-
opment [1,43]. Our evaluation showed that RaQuN reduces
the number of required comparisons by more than 90% for
most experimental subjects, making it possible to match
models of realistic size simultaneously.

In this paper, we extend our previous publication [37]
in three aspects. First, we evaluate RaQuN on five addi-
tional experimental subjects comprising Simulink models,
a model type which we have not considered before. Sec-
ond, we propose two additional configuration options for
RaQuN’s configuration points (cf. Sect. 4); the first option
targets the reduction of RaQuN’s runtime (cf. Sect. 4.1), and
the second option the improvement of RaQuN’s matching
quality with respect to precision and recall (cf. Sect. 4.3).
Finally, we extend our evaluation of the impact of RaQuN’s
configuration points on runtime and matching quality in
terms of two additional research questions (cf. RQ1 and RQ3
in Sect. 5).

In summary, our contributions are:

Generic Matching Algorithm (Sect. 3). We present a generic
simultaneous n-way model matching algorithm, RaQuN, that
uses multi-dimensional search trees to find suitable match
candidates.

Domain-agnostic Configuration (Sect. 4). For all variation
points of the generic algorithm, we propose domain-agnostic
configuration options turning RaQuN into an off-the-shelf n-
way model matcher.

Empirical Evaluation (Sect. 5). We show that RaQuN has
good scaling properties and can be applied to large models
of various types, while delivering matches of better quality
than current state-of-the-art approaches.
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2 n-Way model matching

In this section, we illustrate the n-way model matching
problem with a simple running example and discuss how
algorithmic approaches calculate a matching in practice. As
our running example, we consider the three UML class dia-
grams A, B, and C given in Fig. 2, which are fragments of the
hospital case study [28,38]. Each of the three models is an
early design variant of the data model of a medical informa-
tion system. We use the symbolic identifiers 1 to 8 to uniquely
refer to the models’ classes.

Our representation of models follows the so-called element-
property approach [28]. A model M of size m is a set of
elements {ey, ..., ey}. Each model element ¢ € M, in turn,
comprises a set of properties. For our running example, we
consider UML classes as elements, and we restrict ourselves
to two kinds of properties, namely class names and attributes.
However, the element/property approach is general enough
to account for other kinds of model elements (e.g., states and
transitions in state charts) and other kinds of properties (e.g.,
element references or element types).

Intuitively, n-way matching refers to the problem of iden-
tifying the common elements among a given set of n input
models. A reasonable matching for our example is illustrated
in Fig. 2, indicated by solid lines. The models A and B each
contain a class named Physician. Both classes have several
attributes in common and may thus be considered to represent
“the same” conceptual model element in different variants.
Following common terminology from the field of two-way
matching, we say that class Physician in model A corre-
sponds to class Physician in model B. Similarly, each of the
three models contains a class named AdminAssistant, and all
three variants of the class share several identical attributes.
Thus, these classes form a so-called correspondence group
(aka. ruple [28]). We call such a group a match.

Formally, we define an n-way matching algorithm as a
function which takes as input a set M = {My, ..., M} of
input models and returns a matching T. A matching T =
{t1, ..., ¢} is defined as a set of matches, where each match
t € T is a non-empty set of model elements. Analogously
to all existing approaches to n-way matching [22-28], we
assume matches in 7' to be mutually disjoint, and that no
two elements of a match belong to the same input model.
Formally, a match ¢ is valid if it satisfies the condition

t#ED A t] = ()] (1)

where ((¢) denotes the set of input models from which the
elements of ¢ originate. The intuitive matches illustrated in
Fig. 2, i.e, {3,5,7}, {2, 4}, {1}, {6}, and {8}, are valid and
mutually disjoint.

In theory, a matching could be computed by considering
all possible matches for a set of input models. However, this

Model A Physician Physician Model B
n_Physician n_Physician
History ex_medicalTeam ex_medicalTeam Ward
- patient patient
n,Hlstdory ward ward 4 :ngrd
procedure histor 2 decision -
patientProfile Y physician
nurse AdminAssistant AdminAssistant | | technician
physician 1| [ "AdminAssistant n_AdminAssistant | | "°°™ 6
N : unit
ex_medicalTeam ex_medicalTeam
calendar 3 / decision 5
AN
AdminAssistant Unit
n_AdminAssistant n_unit
ex_medicalTeam ex_generalStorage
calendar description
procedure 7 room
display
Model C scanner 8

Fig.2 Three UML models representing early design variants of the data
model of a medical information system, serving as running example

approach is not feasible, as the number of possible matches
for a set of models is equal to ([T'_, (m; + 1)) — 1 [28],
where n denotes the number of models, and m; denotes the
number of elements in the i-#/2 model.

A trivial approach would be to rely on persistent iden-
tifiers or names of model elements. The limitations of such
simple approaches have been extensively discussed in the lit-
erature on two-way matching [11,12,34-36] (cf. related work
in Sect. 6) and also apply to the n-way model matching prob-
lem. Reliable identifiers are hardly available across sets of
variants, and names are not sufficiently eligible for taking an
informed matching decision without considering other prop-
erties. In particular, names are not necessarily unique, and
some model elements do not have names at all [44].

In practice, matching algorithms thus operate heuristi-
cally. This requires a notion for the quality of a match, or
in other words, a measure for the similarity of matched ele-
ments. Given a match ¢t € T, a similarity function calculates
a value representing the similarity of the elements in r. We
assume that a similarity function makes it possible to (i)
establish a partial order on a set of matches and (ii) determine
whether a set of candidate elements should be matched. An
example for a similarity function is the weight metric intro-
duced by Rubin and Chechik [28] (see Sect. 4.3).

3 Generic matching algorithm

In this section, we first describe our generic n-way matching
algorithm RaQuN (Algorithm 1), followed by an illustration
applying the algorithm to our running example introduced in
Sect. 2, and closing with a theoretical analysis of the algo-
rithm’s runtime complexity. We focus on the high-level steps
that are performed by the algorithm, while we discuss the
details of how each step can be configured later in Sect. 4.

@ Springer
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Algorithm 1 RaQuN

1: procedure RAQUN(M) > A set of input models
2. E <« Uizfl M; > Phase 1:

3:  tree < createEmptyTree() Candidate

4. fore e E do Initialization
5: v, < vectorize(e)

6: tree <— insert(tree, e, v,)

7:  end for

8 P <0 > Phase 2:
9: foree E do Candidate
10: Nbrs < neighbor Search(tree, e) Search

11: for nbr € Nbrs do

12: p < {e, nbr}

13: if isValid(p) then

14: P <~ PU{p}

15: end if

16: end for

17:  end for

18: P <« filter AndSort(P) > Phase 3:
19: T « {{e} | e e E} Matching
20:  for {e,e'} € P do

21: t < selectt € T for which e € ¢

22: t' < selectt’ € T for which e’ € ¢’

23: f<—tut

24: if isValid(f) and shouldMatch(t,t’, e, ¢') then

25: T « (T \ {¢, t’}) U {7}

26: end if

27:  end for

28:  return T > The calculated matching

29: end procedure

3.1 Description of the algorithm

RaQuN takes as input a set M = {My, ..., M,,} of n input
models and returns a set 7 of matches (i.e., a matching). The
algorithm is divided into three phases. The goal of the first
two phases (candidate initialization and candidate search) is
to reduce the number of comparisons required in the third
phase (matching).

Candidate Initialization (Line 2-7) In the first phase, RaQuN
constructs a multi-dimensional search tree comprising all the
elements of all input models as numerical vector representa-
tions. First, RaQuN collects the elements of all input models
in an element set £, and initializes an empty tree. For each
element e € E, a vector representation v, is determined and
inserted into the tree. Hereby, each element is mapped to a
specific point in the tree’s vector space.

Candidate Search (Line 8—17) In the second phase, RaQuN
determines promising match candidates by considering ele-
ments that are close to each other in the vector space, as
determined by a suitable distance metric (e.g., Euclidean
distance). More specifically, RaQuN retrieves the k' nearest
neighbors Nbrs for each element e € E in the vector space
through a k’-NN search on the tree [45]. For every neighbor
nbr € Nbrs of e, RaQuN creates an unordered pair p = {e,
nbr}. If p is a valid match according to Equation 1 (i.e., the
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two elements belong to different models), p is added to the
match candidates P.

Matching (Line 18-27) In the third and last phase, RaQuN
matches elements to each other by comparing the elements
in the pairs P directly. First, in Line 18, all candidate pairs in
P are sorted descendingly by their similarity, yielding list P,
omitting pairs with no common properties. Next, RaQuN cre-
ates a set 7' of matches such that each element e € E appears
in exactly one single-element match {e}. The set T is a valid
matching in which none of the elements has a corresponding
partner. For every candidate pair p € P, p = {e, '}, RaQuN
selects the two matches 7 and ¢’ from T which contain the two
elements e and ¢’, respectively. Since every element e € E is
in exactly one match in 7', the selection of ¢ and ¢’ is unique.
If the union f = ¢ Ut’ is a valid match and its elements form a
good match according to shouldMatch, RaQuN updates the
matching T by replacing the two selected matches ¢ and 1’
with 7. The algorithm terminates once all pairs in P have
been processed. Each match now contains between one and
n elements, and T represents a valid matching.

3.2 Exemplary illustration

We illustrate RaQuN by applying it to our running exam-
ple shown in Fig. 2, comprising the input models: M =
{{1,2,3},{4,5,6},{7.8}}.

Candidate Initialization RaQuN first creates the set of all
elements £ = {1,2,3,4,5,6,7,8} by forming the union
over the models in M. For our example, we choose a very
simple two-dimensional vectorization. The first dimension
is the average length of an elements’ property names, and
the second one is the number of properties of an element.
Class 1:History-A, for example, has an average property
name length of 9.2 and five properties in total; its vector
representation is (9.2, 5). Figure 3 visualizes the resulting k-
dimensional vector space (k=2) and the points of all elements
in E. We can see that intuitively corresponding classes are
mapped to points close to each other, such as the two ’Physi-
cian’ classes from models A and B.

Candidate Search RaQuN performs range queries on the
tree to find possible match candidates. For our example,
we assume that the candidate search is configured to search
for the three nearest neighbors of each element (k'=3). It is
possible that multiple elements have the same vector rep-
resentation and are mapped to the same point in the vector
space, such as elements 3 and 5 in Fig. 3. Therefore, RaQuN
might retrieve more than k' neighboring elements. In our
example, RaQuN finds the neighbors {2, 4, 1} for element
2:Physician-A, and the neighbors {3, 5,7, 1} for element
3:AdminAssistant-A. Neighbors forming a valid match with
the initial element can be considered as match candidates. For
3:AdminAssistant-A, the retrieved candidate pairs are {3, 5}
and {3, 7}. Once the candidate search has been completed for
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Fig. 3 Model elements of our running example mapped to points in a
k-dimensional vector space (with k=2)

all elements, we obtain the set P of candidate pairs:

P = {{1, 4}1,{2,4}, (3,5}, {3, 7}, {5, 7}, {5, 1},
{6,2}, {6, 8}, {7, 1}, {8, 2}, {8, 4}}.

Matching s RaQuN sorts the match candidates P by descend-
ing confidence whether their elements should be matched,
according to its similarity function. For the sake of illus-
tration, we choose a straightforward similarity function:
the ratio of shared properties to all properties in the two
elements—known as the Jaccard Index [46]. We receive the
following (partially) sorted list of candidate pairs:

P=((3.7):3. {2,418 3.5):2,
{5,71:2,{7, 1}:4.{6. 8}: ;).

where {x, y}:z denotes a pair with elements x and y having a
similarity of z. Pairs with a similarity of O are removed during
sorting, as their elements have no common properties.

Next, RaQuN initializes the set of matches T such that
there is exactly one initial match for each element: 7 =
{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. RaQuN now iterates
over the pairs in P and merges the corresponding matches in
T accordingly. To keep the example simple, we assume that
matches should be merged if the similarity of the candidate
pair is at least % The first pair that is selected is {3, 7}, as its
elements have the highest similarity. Thus, RaQuN selects the
matches t = {3} and ¢’ = {7} from T and check whether their
comprised elements should be matched. This is the case for
the selected matches since the similarity between its elements
is % > % RaQuN thus merges the matches to the new match
f = {3, 7}. RaQuN replaces ¢ and ¢’ with 7, and receive T =
{{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}}. In the second iteration,
RaQuN selects ¢t = {2} and ¢’ = {4}. Both are merged to the
valid match 7 = {2, 4}. RaQuN repeats this process until all
candidate matches in P have been considered. We obtain the
final matching T = {{1}, {2,4},{3,5,7}, {6}, {8}}, which is
equal to the intuitive matching illustrated in Fig. 2.

3.3 Worst-case complexity

We estimate RaQuN’s worst-case runtime complexity for
each phase. Let n denote the number of input models and
m the number of elements in the largest model.

Candidate Initialization: Each element ¢ € E with |E| <
nm is vectorized and inserted into the tree. We assume that
vectorization is an O (1) operation. Given that insertion into a
search tree is possible in O (nm) [45], the worst-case runtime
complexity of this phase is O (nm - (1 + nm)) = O(n>m?).
Candidate Search: For each of the at most nm elements
in E, a neighbor search is performed which is possible in
O (lognm) [45,47]. For each of the potential nm neighbors
(e.g., when all elements are at the same point) three constant
runtime operations are performed in Line 12—15. This results
in a complexity of O (nm - (lognm 4+ nm - 1)) = 0 (n*m?).
Matching: The matching phase operates on the set of pos-
sible pairs P to match. In the worst case, all elements from
other models are valid match candidates for an element e
during Phase 2. Thus, |P| < (nm)? and sorting P in Line 18
requires O (n”m? log nm) steps in the worst case. Construct-
ing T in Line 19 is possible in O (nm). The steps inside the
loop at Line 20 have to be repeated O (n>m?) times because
|f’| < (nm)>2. Searching for matches ¢, ¢’ in Line 21 and 22
has a worst-case complexity of O(nm) because |T'| < nm.
Merging the matches in Line 23 is O(n) as valid matches
only contain at most one element per model, i.e., [t Ut'| < n.
For the same reason, shouldMatch in Line 24 requires O (n)
steps. Line 25 exhibits worst-case runtime of O (nm). We get
O (n’*m? lognm + n?m? - nm) = O(n3m3).

Overall Complexity The matching phase dominates the run-
time complexity: We get O(n’m> + n’m?> + n’m’) =
O (nm?) in the worst case, which is an improvement over
NwM’s worst-case complexity of O(n*m*) [28]. In practice,
we expect a much lower runtime complexity because Phase
1 and 2 of RaQuN are dedicated to reduce the number of
comparisons in Phase 3, while the estimation of the worst-
case complexity assumes no reduction. It is highly unlikely
that all elements are mapped to the same point in the vector
space such that all pairs of elements become potential match
candidates in P.

4 Configuration options

In this section, we discuss the variation points of RaQuN. For
each of them, we propose a domain-agnostic configuration
option such that RaQuN can be applied to models of any
type. In the following, we discuss possible adjustments and
implementations for the different variation points in each
phase of RaQuN.

@ Springer
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4.1 Candidate initialization

The candidate initialization has two points of variation: the
multi-dimensional search tree and the vectorization.

RaQuN can construct the vector space with any multi-
dimensional data structure supporting insertion and neighbor
search, such as kd-trees [45].

The vectorization function defines the abstraction of
model elements and their properties. It embodies RaQuN’s
core trade-off between runtime performance and matching
quality, as it directly impacts which match candidates are
retrieved and the computational effort of retrieval. Gener-
ally speaking, a vectorization function should cluster similar
elements in the same region of the vector space. If more
dimensions are used for vectorization, the level of abstraction
is lower and the clustering of similar elements is improved,
but the nearest neighbor search on the tree requires more
time. If less dimensions are used, the level of abstraction is
greater, which can reduce the time required to find match
candidates significantly, but it also becomes less likely that
suitable match candidates can be found among the neighbors
in the vector space. This could negatively affect the quality
of the matching, as more incorrect or missing matches might
be produced.

In the following, we discuss two examples of possible vec-
torization functions: a low-dimensional vectorization (Low
Dim) and a high-dimensional vectorization (High Dim).
These are two concrete suggestions which can be applied to
any element/property representation of a model; Low Dim is
in favor of performance and High Dim is in favor of matching
quality.

Low Dim The low-dimensional vectorization reuses the two
dimensions of the very simple vectorization presented in
Sect. 3.2. These two dimensions encode the average number
of characters in an element’s properties, and its total number
of properties. Additionally, for each unique character in an
element’s properties, there is one dimension that represents
the number of occurrences of that character in the element’s
properties. The number of dimensions is bound by the size of
the alphabet and may be reduced by omitting those dimen-
sions which represent characters that do not occur in any
property name.

High Dim The high-dimensional vectorization represents all
distinct properties of model elements of all input models by
a dedicated dimension of the vector space {0, 1}X, where K
is the number of distinct properties in all elements. Thus,
the vectorization performs a one-hot encoding of all distinct
properties in the input models. An element is represented by
a bit vector in this space; the value at the index representing a
dedicated property is set to 1 if the element has that property,
and 0 otherwise. The number of required dimensions dynam-
ically grows with the number of distinct properties and thus
with number and size of input models.

@ Springer

4.2 Candidate search

The candidate search is configured by the number of consid-
ered nearest neighbors k' and the distance metric.

The parameter k' determines how many neighbors are
retrieved for each element, which directly influences how
many candidate pairs p are considered during the match-
ing phase. Increasing k' leads to more candidate pairs. Each
neighbor will be less significant than the previous one as
nearer (more similar) neighbors are considered first. While
an optimal value of k’ can only be determined empirically
with respect to a dedicated measure of matching quality, a
reasonable starting point for this is to set k'=n, as in our
illustration in Sect. 3.2. The rationale behind this is that each
element may have at most one corresponding element per
input model, limiting the number of corresponding elements
to n — 1. The choice of n respects that the nearest neighbor
search considers the query point itself as first neighbor.

The distance metric is used to determine the distance
between the vector representations of two elements in the
vector space. The metric influences which elements are con-
sidered close or distant to each other (i.e., which elements
are considered to be neighbors). In this work, we use the
Euclidean distance, leaving experimentation with other dis-
tance metrics such as Cosine similarity or any custom metric
(e.g., a metric emphasizing specific dimensions) for future
work.

4.3 Candidate matching

In RaQuN’s final matching phase, potential match candi-
dates are compared directly according to their similarity,
and the shouldMatch predicate determines whether candi-
dates should be formed to actual matches. The purpose of
shouldMatch is to compensate potential inaccuracy from
abstracting elements by numerical vectors. In general, an
implementation of shouldMatch could work on concrete
model representations, consider meta-data related to the
models, etc. To stay independent of such domain-specific
aspects, in this work, we stick to relying only on the
generic element-property representations when implement-
ing shouldMatch.

The similarity function, which determines the similarity
of elements, is applied to assess the quality of a matching as
illustrated in Sect. 2. It is used to sort the match candidates
P in Line 18 such that more similar pairs are considered
to be merged first. In the following, we discuss two possi-
ble similarity functions and their corresponding shouldMatch
predicate.

Weight Metric The first similarity function is the weight
metric by Rubin and Chechik [28], which assigns a weight
w(t) € [0, 1] to a match depending on the number of com-
mon properties and the number of elements in the match.
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Given a match ¢, the weight is calculated as

) 14
Losj<lJ” 1

YO = o]

@

where |¢| denotes the size of the match, nf the number of
properties that occur in exactly j elements of the match, and
7 (t) is the set of all distinct properties of all elements in the
match ¢.

For the configuration of shouldMatch' we follow the
match decision proposed by Rubin and Chechik [28]. The
idea is that any extension of a match should increase the
quality of the overall matching. Two matches ¢ and ¢’ are
merged if the weight of the merged match ¢ U ¢’ is greater
than the sum of the individual match weights:

shouldMatch,(t,t,e,e) :=wtUt) > w() + w)?3)

Jaccard Index The second similarity function is the Jaccard
Index, which we applied in our motivating example in Sect.
3.2. The Jaccard Index is a wide-spread similarity metric for
sets; it is named after Paul Jaccard who first defined it as
coefficient de communauté in his work on flora in the alpine
zone [46]. The Jaccard Index can be applied to our matching
problem, because elements are sets of properties. We want
to match elements that have many common properties, while
having only few individual properties. Given a match ¢, the
Jaccard index is calculated as

meet €
Ueer €

where e is an element, which we consider to be a set of prop-
erties. A greater Jaccard Index index corresponds to greater
similarity.

Regarding shouldMatch, we define that elements should
be matched if their similarity is greater or equal to a prede-
fined similarity threshold s:

J(t) = “

shouldMatchy(t,t e, ) :=J@tUt) > s 5)

While shouldMatch used by the weight metric matches two
elements greedily (i.e., elements can be matched if they have
at least one common property), a threshold-based definition
allows the specification of the desired minimum similarity of
matches. Thereby, it is also possible that extending a match
might decrease its match quality, as long as the minimum
similarity is kept. Itis not feasible to use a similarity threshold

! The shouldMatch predicate takes the two matches, ¢ and ¢/, and the
elements in the candidate pair, e and ¢, as input and returns true or
false. While e and ¢’ are not used by the shouldMatch predicates
presented here, we extended the predicate’s interface to allow for match
decisions that explicitly take e and ¢’ into account.

for the weight metric, because the weight also depends on
the size of the match and the number of considered models;
different thresholds would have to be applied depending on
the considered models and the current match size.

We expect that each configuration option presented in this
section has an impact on RaQuN’s runtime and matching
quality. We want to investigate this impact empirically.

5 Evaluation

In addition to our conceptual and theoretical contributions,
we conduct an empirical investigation on a variety of datasets.
We are interested in whether RaQuN scales for large models
while achieving high matching quality. The full replication
package can be found on Zenodo [48] and GitHub?.

RQ1 How does the configuration of RaQuN’s candidate
initialization (i.e., vectorization) affect its matching
quality and runtime?

RQ2 Is k' = n a suitable heuristic for the number of con-
sidered neighbors during RaQuN’s candidate search?

RQ3 How does the configuration of RaQuN’s candidate
matching affect its matching quality?

RQ4 How does RaQuN perform compared to NwM and
sequential two-way matching in terms of matching
quality and runtime?

RQ5 How does RaQuN scale with growing model sizes?

5.1 Selected algorithms

Table 1 summarizes the matchers we used for our exper-
iments. We compare different configurations of RaQuN,
NwM, and two sequential two-way approaches (Pairwise).
All matchers are implemented in Java.

5.1.1 Prototypical implementation of RaQuN

We implemented a prototype of RaQuN which uses a generic
kd-tree library by the Savarese Software Research Corpo-
ration [49]. For all other variation points, we implemented
the domain-agnostic configuration options discussed in Sect.
4 as extension of the prototype. First, for the comparison
of vectorization functions (cf.Sect. 4.1), we implemented
RaQuN Low Dim and RaQuN High Dim named according
to their vectorization function; both use the weight metric
as similarity function. Second, for the comparison of simi-
larity functions (cf.Sect. 4.3), we additionally implemented
RaQuN Jaccard using the Low Dim vectorization function
and the Jaccard Index as similarity function.

2 https://github.com/AlexanderSchultheiss/RaQuN.
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Table 1 Selected algorithms

and their configurations Name Type Vectorization F. Similarity F.
RaQuN Low Dim n-way Low Dim Weight
RaQuN High Dim n-way High Dim Weight
RaQuN Jaccard n-way Low Dim Jaccard Index
NwM n-way N/A Weight
Pairwise Ascending two-way N/A Weight
Pairwise Descending two-way N/A Weight

5.1.2 Baseline algorithms

All baseline matchers use the weight metric [28], defined in
Equation 2, as similarity function (see Sect. 2). The prevalent
way to calculate n-way matchings is sequential two-way [22—
27]. This leaves open (a) which two-way matching algorithm
is used in each iteration, and (b) the order in which inputs
are processed. For (a), we use the Hungarian algorithm [50]
to maximize the weight of the matching in each iteration.
For (b), Rubin and Chechik [28] report the most promising
results for the Ascending and Descending strategies, which
sort the input models by number of elements in ascending
and descending order, respectively. For NwM, we use the
prototype implementation provided by Rubin and Chechik
[28].

5.2 Experimental subjects

Our experimental subjects and their basic characteristics are
summarized in Table 2.

5.2.1 Experimental subjects of Rubin and Chechik

To enable a fair comparison with NwM, the first five
subjects selected for our evaluation stem from the n-way
model matching benchmark set used by Rubin and Chechik
[28]. The Hospital and Warehouse datasets include sets of
student-built requirements models of a medical information
and a digital warehouse management system, for both of
which variation arises from taking different viewpoints. Both
datasets originate from case studies conducted in a Master’s
thesis by Rad and Jabbari [38]. The latter three datasets have
been synthetically created using a model generator, which
in the Random case mimics the characteristics of the hos-
pital and warehouse models. The Loose scenario exposes a
larger range of model sizes and a smaller number of prop-
erties shared among the models’ elements, while the Tight
scenario exposes a smaller range w.r.t. these parameters.

5.2.2 Variants generated from product lines

The second set of selected subjects are variant sets generated
from model-based software product lines. We use a superset
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of the n-way model merging benchmark set used in a recent
work of Reuling et al. [S1].

The Pick and Place Unit (PPU) is a laboratory plant
from the domain of industrial automation systems [52,53]
whose system structure and behavior are described in
terms of SysML block diagrams and UML statemachines,
respectively [39]. Variation arises from different scenarios
supported by the plant. The Barbados Car Crash Crisis Man-
agement System (bCMS) [40,54] supports the distributed
crisis management by police and fire personnel for accidents
on public roadways.

We focus on the object-oriented implementation models of
the system [40], including both functional and non-functional
variability. The Body Comfort System (BCS) [41] is a case
study from the automotive domain whose software can be
configured w.r.t. the physical setup of electronic control units.
We use the component/connector models of BCS, specify-
ing the software architecture of the 18 variants sampled by
Lity et al. [41]. ArgoUML is a publicly available CASE-tool
supporting model-driven engineering with the UML. It was
used in prior studies [55,56] and provides a ground truth
for assessing the quality of a matching using precision and
recall. The dataset comprises detailed class models of the
Java implementation [42]. They represent different tool vari-
ants which have been extracted by removing specific features
for supporting different UML diagrams.

5.2.3 Variant sets created through clone-and-own

Another subject stems from a software family called Apo-
Games which has been developed using the clone-and-own
approach [1,43] (i.e., new variants were created by copying
and adapting an existing one) and which has been recently
presented as a challenge for variability mining [57]. The
challenge comprises 20 Java and five Android variants, from
which we selected the Java variants only.

5.2.4 Simulink subjects

We also included five Simulink subjects. Three of them are
case studies taken from Schlie et al. [58,59]: DAS, a driver
assistance system from the SPES_XT project [60], and APS,
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Table 2 Experimental subjects

. . Elements Properties
and their characteristics. Model Type #Models  Ave. Median  Avg.  Median
Hospital Simple class diag. 8 27.62 26 4.84 4
‘Warehouse Simple class diag. 16 24.25 22 3.65 3
Random Synthetic 100 26.99 26 5.36 5
Loose Synthetic 100 28.88 29 4.43 4
Tight Synthetic 100 25.01 25 8.79 9
Apo-Games Simple class diag. 20 63.05 60 19.62 13
PPU Structure SysML block diag. 13 32.15 32 3.26 2
PPU Behavior UML statemachines 13 221.85 228 5.04 5
bCMS UML class diag. 14 67.71 63 3.60 2
BCS Component/connector 18 78.78 72 5.81 4
ArgoUML UML class diag. 7 1,752.86 1,749 9.05 4
DAS Simulink 19 842.37 879 11.00 11
APS Simulink 7 202.71 206 11.00 11
APS-TL Simulink 5 181.20 165 11.00 11
MRC Simulink 3 773.33 970 11.00 11
WEC Simulink 6 650.00 668 11.00 11

and APS_TL, an auto platooning system from the CrEst
project [61]. Schlie et al. extracted module building blocks
from the Simulink models, which he then recombined in dif-
ferent combinations to generate variants of the three systems.
We followed his process to generate 19, 7, and 5 variance
models, respectively.

As Boll et al. previously found open-source Simulink
models to be suitable for empirical research [62], we mined
GitHub for open-source projects with Simulink models.
We found 317 distinct projects with 4,402 Simulink mod-
els. In this set, we conducted a basic search for Simulink
model “twins”, by looking for models with identical qualified
names, i.e. having the same subdirectory path and file name.
Our intention of this was finding variations of Simulink mod-
els in different forks. We view these forked Simulink models
as a substitute for variants. To this end, we investigated the
“twins” and rejected identical models (by hashsum and then
manual inspection), models of trivial size, and models with-
out any matchable elements. This search and filtering yielded
two families: MRC comprising three® and WEC comprising
six Simulink models.*

3 These stem from the MRC contest (https://de.mathworks.com/
matlabcentral/fileexchange/50227-mission-on-mars-robot-challenge-
2015-france). Contestants constructed variants of a robot that identifies
obstacles and avoids them.

4 Here, forks modified a library model stemming from the open-source

wave energy conversion simulator (WEC) (https://wec-sim.github.io/
WEC-Sim/master/index.html).

5.2.5 Generation of ArgoUML subsets

As already mentioned, realistic applications of n-way match-
ing in practice typically have to deal with large models but
only a few model variants. Thus, we are primarily interested
in how the algorithms scale with growing model sizes for
a fixed number of model variants. Answering this question
requires experimental subjects with a stepwise size increase.

To that end, in addition to the presented experimental sub-
jects, we generated subsets of ArgoUML, which comprises
the largest models of our subjects. The subjects are presented
in Table 3.

All subsets have the same number of models as ArgoUML
but vary in the number of elements. The number of elements
in each subset is a fixed percentage between 5% and 100%
of the number of elements in ArgoUML. We increased the
percentages in 5% steps and generated 30 subsets for each
percentage, in addition to 30 subsets with 1% of elements.

The sub-models are generated as follows. First, we ran-
domly select a subset of classes from the set of all classes
of a given model such that the subset contains the desired
percentage of the overall number of classes. We repeat the
selection for each model in ArgoUML so that the number of
models remains the same. Second, we eliminate properties
corresponding to dangling references in the selected classes,
such that no typed property references a class which is not
contained in the subset of selected classes.
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Table 3 ArgoUML subsets and their characteristics

Elements
Size Avg.

Properties
Median  Avg.  Median

Argo-Subset-1 1%
Argo-Subset-5 5%
Argo-Subset-10  10%
Argo-Subset-15  15%
Argo-Subset-20  20%
Argo-Subset-25  25%
Argo-Subset-30  30%
Argo-Subset-35  35%
Argo-Subset-40  40%
Argo-Subset-45  45%
Argo-Subset-50  50%
Argo-Subset-55  55%
Argo-Subset-60  60%
Argo-Subset-65  65%
Argo-Subset-70  70%
Argo-Subset-75  75%
Argo-Subset-80  80%
Argo-Subset-85  85%
Argo-Subset-90  90%
Argo-Subset-95  95%
ArgoUML 100%

18.52 19 8.88
93.83 94 8.61
187.16 187 8.57
278.39 278 8.51
369.08 369 8.61
459.68 460 8.59
549.15 549 8.53
637.57 638 8.58
726.04 725 8.49
813.00 813 8.54
900.15 899 8.54
987.39 987 8.60
1073.47 1073 8.59
1159.51 1159 8.60
1245.00 1244 8.61
1330.52 1329 8.61
1415.41 1416 8.64
1499.65 1496 8.65
1584.42 1583 8.67
1668.24 1665 8.68
1752.86 1749 9.05

S Y N N S N N S - U N O O

5.2.6 Conversion to element/property representations

Converting the experimental subjects into element/property
representations requires a pre-processing step that is model-
type and technology-specific. The main idea is to convert
those entities of a model into elements, for which a match
should be found, and to convert all entities that are related to
an element into its properties. Here, a domain expert decides
which properties are (possibly) relevant for distinguishing
elements (e.g., an element’s position in a visual representa-
tion might not be relevant). For example, if UML activity
diagrams are to be matched, each activity could be converted
into an element, and the properties of an activity could be its
name, as well as the names of its preceding and subsequent
activities. In this case, an element’s property (i.e., its name)
is also a property of another element. We followed this idea
for the conversions of our experimental subjects.

For class diagrams, we convert classes and interfaces to
elements; the properties are the class’ or interface’s name, its
method signatures, and names of fields. For statemachines,
we convert states and transitions into elements; the proper-
ties of a state are the names of its incoming and outgoing
transitions, as well as the names of its actions; the properties
of a transition are the names of its source and target state, as
well as the names of its effect and guard. For SysML block
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diagrams, we convert blocks into elements; the properties are
the names of a block’s attributes. For component/connector
diagrams, we convert components and connectors into ele-
ments; the properties of a component are the names of its
ports, as well as the names of incoming and outgoing connec-
tors; the properties of a connector are the name of its type, as
well as the names of its source and target component. Lastly,
for Simulink models, we convert Simulink blocks into ele-
ments; the properties are similar to the ones considered by
Schlie [59]: The name of a block, the block’s type, the name
of its parent, the numbers of its inputs and outputs, and its
graphical position.

For the conversions implementation, we used the generic
EMF model traversal and reflective API to access an ele-
ment’s local properties and referenced elements. Elements
and properties of the Simulink models were accessed via
basic Simulink getter routines, as well. Our pre-processing
code is part of our replication package [48].

5.3 Evaluation metrics

While measuring efficiency is a largely straightforward micro
benchmarking task, there exists no generally accepted defini-
tion of the quality of a matching in the literature [51]. We use
the two most widely established quality evaluation metrics
weight and precision/recall.

5.3.1 Weight

One way to measure the quality of an n-way matching is
the weight metric [28], which we also use as a similarity
function (cf. Sect. 4.3), where the optimal matching is the
one with the highest weight, expressed as the sum of the
individual match weights. Given a matching 7', its weight is
calculated as w(T) = ZteT w(t), where w(t) is calculated
as in Equation 2. There can be several matchings with the
same weight, and thus several optimal matchings for a set of
models. We chose the weight metric as it does not depend on
a ground truth, which is often not available.

5.3.2 Precision/Recall

In the context of two-way matching, the quality of a match-
ing is often assessed using oracles and traditional measures
(i.e., precision and recall) known from the field of informa-
tion retrieval [63]. For our experimental subjects, however,
such oracles are only available for models generated from a
software product line. Here, unique identifiers id(e) may be
attached to all model elements e of the integrated code base
and serve as oracles when being preserved by the model gen-
eration. This way, corresponding elements have the same ID.
These IDs are generally not available for models that did not
originate from a product line (e.g., models created through
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cloning), and they are not exploited by the matching algo-
rithms used in our experiments.

Each two-element subset of a valid match is considered a
true positive TP if its elements share the same ID. If these ele-
ments have different IDs, they are considered false positive
FP. Two elements sharing the same ID but being in distinct
matches are considered false negatives FN. The amount of
TP, FP, and FN is defined over all the matches in T':

TP(T) =Y |{ler.e2} St | id(er) = id(e)}] (6)
teT
FP(T) =) [{{er.e2} St | id(er) # id(er)}] @)
teT
INT) =] | {fer.ea} | ereter e, (®)
t1,heT

s id(er) = id(e2)}]

Precision, recall, and F-measure are calculated as usual [63]:

o IP(D))
precision(T) =
|TP(T)| + | FP(T)]
recall(T) = TP (D)

|TP(T)| + |FN(T)|
precision(T) - recall(T)

F-measure(T) =2 - —
precision(T) + recall(T)

Precision expresses how many formed matches are cor-
rect, recall expresses how many required matches have been
formed, and F-measure is the harmonic mean of precision
and recall.

5.4 Methodology and results

We ran our experiments on a workstation with an Intel
Xeon E7-4880 processor with a frequency of 2.90GHz. In
order to reduce the influence of side-effects caused by addi-
tional workload on the experimental workstation, we run
each matcher 30 times on each of our experimental subjects,
except for Random, Loose, and Tight for which we follow
the methodology of Rubin and Chechik [28]. Here, we select
10 subsets comprising 10 of the 100 models for each run that
is repeated 30 times, leading to 300 runs per matcher and
subject. Regardless of the experimental subject, we permu-
tate the input models randomly for each experimental run to
minimize the potential impact that the order of models might
have on the result, due to RaQuN’s filterAndSort (cf. Line
18) not determining a fixed order in the case of candidate
pairs having equal similarity. We set a time-out of 12 hours
for each run, due to the high number of experimental runs.
For our time measurements, we do not consider the
time required for the conversion of the models to an ele-

ment/property representation, because it is a one-time pre-
processing step that is detached from n-way matching.

For smaller subjects (e.g., PPU Structure), the conversion
took less than one second. For the larger datasets (e.g., PPU
Behavior, ArgoUML), the conversion took less than five sec-
onds. Furthermore, the conversion time is dominated by the
time required for IO operations. Thus, the hardware on which
the models are stored (i.e., secondary storage device) is a
main factor.

5.4.1 RQ1: configuration of the candidate initialization

To assess how the configuration of the candidate initialization
(i.e., which vectorization function is used) impacts RaQuN’s
performance, we compare RaQuN Low Dim and RaQuN
High Dim on the experimental subjects presented in Sect. 5.2.
Table 4 presents the average weight and runtime achieved by
the two configurations.

Here, we consider the weight metric as it does not require
a ground truth, which is not available for all datasets.

With respect to runtime, both configurations can compute
amatching for each of the experimental subjects, requiring at
most a couple of minutes for all subjects besides ArgoUML.
RaQuN Low Dim is significantly faster than RaQuN High
Dim across all datasets; its smallest relative speed-up of a
factor of 1.6 can be observed on DAS, and the largest rel-
ative speed-up of a factor of 71.0 on ArgoUML. In terms
of absolute runtime differences, RaQuN Low Dim achieves
only a minor advantage on small datasets (e.g., Hospital,
Warehouse, or Random), but it can compute a matching for
ArgoUML - the experimental subject with the largest models
—in less than one minute, while RaQuN High Dim requires
almost an hour. With respect to weight, both configurations
achieve similar matching weight on the majority of experi-
mental subjects, but RaQuN High Dim computes matchings
with higher weight on almost all experimental subjects.

These results show, that both of our generic vectorization
functions lead to varying results, depending on the charac-
teristics of the experimental subjects (cf.Table 2). This is not
surprising, because mapping elements to points in the vec-
tor space based on property names (High Dim), or based
on the characters used in the properties’ names (Low Dim),
is directly affected by the characteristics of the subject. The
only subject, on which RaQuN High Dim computes a match-
ing with slightly lower weight, is DAS. DAS is also the
subject on which the smallest relative runtime difference was
measured, which suggests that, for DAS, both vectorization
functions lead to a similar mapping of elements to points in
the vector space.
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Apo-Games

Tight

Loose

Warehouse Random

Hospital

Table4 Comparison of achieved weights and runtimes across RaQuN configurations, averaged over 30 runs for each subject

Algorithm
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Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s) Weight Time (in s)

Weight Time (in s)

71.12 [41.30, 104.58]
1.23 [1.16, 1.40]

18.27

18.27

0.07 [0.05,0.11]
0.02 [0.01, 0.10]

0.13[0.07,0.33] 0.94
0.01[0.01,0.08] 0.84

1.03
0.77

0.07 [0.05, 0.13]
0.02 [0.01, 0.18]

1.04

0.320.27,0.93]
0.05 [0.04, 0.08] 0.82

0.08 [0.07,0.12] 1.63

0.01 [0.01, 0.03]

RaQuN High Dim. 4.92

1.53

RaQuN Low Dim. 4.04

ArgoUML
Weight

bCMS BCS
Weight

PPU Behavior

PPU Structure

Algorithm

Time (in s)

Time (in s)

Weight

Time (in s)

Time (in s)

Weight

Time (in s)

Weight

2,647.76 [1, 483.48, 3, 324.70]

37.71 [33.56, 45.65]

1727.65
1727.45

12.58 [8.10, 18.22]
575 [5.45, 6.72]

2.84[1.40,3.58] 51.17
51.16

0.22[0.20, 0.32]

41.53
41.47

18.32 [16.39, 20.34]
9.61[9.12, 10.90]

164.53

0.85 [0.81, 0.90]
0.10 [0.09, 0.17]

28.95

RaQuN High Dim.
RaQuN Low Dim.

164.26

28.95

WEC

APS APS-TL MRC
Weight

DAS

Algorithm

Time (in s)

Weight

Time (in s)

Weight

Time (in s)

Time (in s)

Weight

Time (in s)

Weight

269.11 [201.61, 536.52]

263.14
5.13 [3.85, 6.20]

51.39 [31.97,94.79]
1.01 [0.87, 1.26]

153.72 1.78[0.78,5.55] 534.22
0.36 [0.33, 0.52]

3.74 [2.06, 7.26]

169.41

1,073.55 [943.73, 1, 272.92]
669.67 [644.30, 748.11]

732.27

RaQuN High Dim.
RaQuN Low Dim.

257.97

153.72 530.16

1.41[1.32, 1.56]

169.41

732.31

Bold values correspond to the highest weight and lowest runtime in each column

Both generic configurations, RaQuN Low Dim and RaQuN
High Dim, achieve their intended purpose and make it fea-
sible to compute a matching for each experimental subject.
The configuration of the candidate initialization has a signif-
icant impact on the runtime and match quality. While there
is a noticeable trade-off between runtime and weight, opt-
ing for the maximization of weight is reasonable for almost
all subjects.

5.4.2 RQ2: suitability of k” heuristic during candidate search

In order to assess the suitability of k' = n as heuristic for
the number of neighbors during the candidate search, we ran
RaQuN Low Dim and RaQuN High Dim with increasing
values of k’. We observed highly similar results for RaQuN
Low Dim and RaQuN High Dim, and we thus discuss the
results for RaQuN High Dim in the remainder of this section
to reduce redundancy.

Figure 4 presents the results of the runs of RaQuN High
Dim conducted on the datasets PPU, bCMS, and ArgoUML.

The plots display the value of k' against the runtime
of RaQuN. The red line marks the X’ at which the candi-
date search retrieved all match candidates required to reach
RaQuN’s peak weight performance. The blue line marks the
k' that is equal to the number of models n, which we propose
as a possible heuristic for &’

Our findings show that setting k¥’ = n made it possible
to achieve the best matching possible with RaQuN. RaQuN
was able to find the best candidates with small values of k.
There are several reasons for this. First, multiple elements can
be mapped to the same point in the vector space, leading to
more than k’ elements being retrieved by the candidate search
(cf. Sect. 3.2). Second, the candidate search is performed for
each element. In our examplary illustration (cf. Sect. 3.2),
RaQuN retrieves only one match candidate (4:Physician-B)
for 1:History-A, but 1:History-A is part of three candidate
pairs, because it is retrieved as match candidate for two
other elements (5:AdminAssistant-A and 7:AdminAssistant-
C). Third, elements can be matched transitively, if they have
a common match candidate. This is because the matching
phase merges matches that contain the match candidates, if
shouldMatch evaluates to true (cf. Sect. 3.1). For example,
an element A is a candidate for an element B, and B is a
candidate for an element C; if A and B are matched, RaQuN
might add C to the match, after considering the candidate
pair containing B and C.

Selecting a higher value for k" does not deteriorate the
match quality, because the final match decision depends on
shouldMatch. Moreover, the runtime of RaQuN shows a
linear growth with higher k', which indicates that consid-
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Fig.4 Impact of an increasing number of neighbors considered for matching on the performance of RaQuN High Dim

ering more neighbors than necessary will not cause a sudden
increase in runtime.

Table 5 presents an overview of how many comparisons
are saved by the candidate search (using k'=n).

For most experimental subjects, RaQuN is able to reduce
the number of comparisons by more than 90%. PPU is the
only subject on which we achieve a rather low reduction of
48.5%. This is due to the high similarity of elements, and the
fact that the models are relatively small.

With the heuristic choice of k’=n, RaQuN retrieves enough
candidates for good matches, while still reducing the num-
ber of element comparisons by more than 90% for most
experimental subjects.

5.4.3 RQ3: configuration of RaQuN’s candidate matching

RaQuN’s third configuration aspect is the similarity function
and its shouldMatch predicate (cf.Sect. 4.3). We compare
the weight metric and the Jaccard Index as two possible
options for the configuration of RaQuN’s matching phase
(cf.Sect. 4.3). For the Jaccard Index, we also have to set a
value for the similarity threshold of its shouldMatch predi-
cate (cf.Sect. 4.3). In practice, we envision that the similarity
threshold is customized with respect to the similarity required
for subsequent development activities. However, for the sake
of evaluating RaQuN, we consider model matching indepen-
dent of subsequent activities. Instead, we evaluate the Jaccard
Index with a range of similarity thresholds from 0.25 through
1.00 in steps of 0.25.

Furthermore, while using the weight metric to assess the
quality of matches is valid when comparing matchers that
all rely on the same similarity function, it suffers from a
bias when comparing different similarity functions. More
specifically, we cannot conduct a comparison of matchers
using the weight metric and matchers using the Jaccard
Index as shown in Table 4, because using the weight metric
for evaluation would favor matchers that internally use the
weight metric to decide whether elements should be matched.

Therefore, we answer the research question by matching
our ArgoUML subsets. The subsets comprise unique iden-
tifiers making it possible to calculate precision, recall, and
F-measure (cf.Sect. 5.3), which we consider to be unbiased
evaluation metrics for the comparison of different similarity
functions. Figure 5 presents the average precision, recall,
and F-measure of RaQuN Low Dim using the weight metric,
and RaQuN Jaccard using the Jaccard Index.’

First, when considering precision (i.e., how many formed
matches are correct) achieved by RaQuN Low Dim and
RaQuN Jaccard, we observe that the precision of all match-
ers increases with increasing subset size. This is because
the subsets are generated randomly by removing elements
from the models. In turn, elements in the smaller subsets
have fewer corresponding elements in other models, which
increases the chance of matching elements that should not
be matched. Furthermore, we observe differences between
the precision of the matchers, depending on the similarity
threshold of the Jaccard Index: Generally speaking, a higher
threshold leads to higher precision. We expected this result
because the likelihood of a match being correct correlates
with the similarity of its elements. This is also the reason
why RaQuN Low Dim achieves similar precision as RaQuN
Jaccard with a threshold of 0.25; the weight metric forms
matches greedily (i.e., elements can be matched if they have
at least one common property), which is comparable to a
small similarity threshold.

Second, with respect to recall (i.e., have all required
matches been formed), we observe almost no difference
between the two similarity functions. RaQuN Low Dim and
RaQuN Jaccard achieve a high recall between 0.95 and 1.00
across all datasets. Only RaQuN Jaccard using a similarity
threshold of 1.00 achieves a significantly lower recall across
all subsets. This is not surprising, because a threshold of 1.00
only matches elements that have exactly the same set of prop-
erties, while a match can also be correct if the elements have
a few different properties.

> Both configurations use the Low Dim vectorization to reduce the
runtime of the experiment.
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Table 5 Number of element

comparisons that are saved by Dataset :é“ f-way mzyitching RaQuN' .
RaQuN High Dim with k'=n omparisons #Comparisons Saved
Hospital 21,211 936 95.6%
‘Warehouse 70, 037 4044 94.2%
Random 27,918 1964 93.0%
Loose 26,716 1995 92.5%
Tight 28,982 1569 94.6%
Apo-Games 750, 319 31,028 95.9%
PPU Structure 80, 620 30, 853 61.7%
PPU Behavior 3,814, 644 207, 385 94.6%
bCMS 416, 571 44,336 89.4%
BCS 939, 346 164, 860 82.4%
ArgoUML 64,521, 622 362, 890 99.4%
DAS 121, 115, 254 3,700, 634 96.9%
APS 858,294 33,500 96.1%
APS-TL 325, 143 9584 97.1%
MRC 1,675,724 6745 99.6%
WEC 6,128,714 24,306 99.6%
6 Precision on ArgoUML Subsets 456 Recall on ArgoUML Subsets 1 F-Measure on ArgoUML Subsets
0.8 0.8 0.8
506 =06 % 0.6
S 8 1)
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Fig. 5 Average precision, recall and F-measure of RaQuN Low Dim and RaQuN Jaccard on subsets of ArgoUML with increasing size. RaQuN
Jaccard was run with varying thresholds for its shouldMatch predicate, ranging from 0.25 to 1.00

Finally, with respect to F-measure (i.e., the harmonic mean
between precision and recall), the results show that RaQuN
Jaccard using a similarity threshold of 0.75 achieved the best
matching quality across all subsets and that RaQuN Low
Dim and RaQuN Jaccard with thresholds of 0.25 and 1.00
achieved the worst overall matching quality depending on
the subset size.

RaQuN Jaccard achieves similar or better matching quality
than RaQuN Low Dim, depending on the chosen similarity
threshold. By considering a range of thresholds, we found
that RaQuN Jaccard with a high threshold (i.e., greater than
0.75) can achieve almost perfect precision, but that select-
ing a too high threshold (i.e., 1.00) negatively affects the
recall. In practice, RaQuN should apply a similarity func-
tion with a similarity threshold in order to reduce the number
of incorrect matches.

@ Springer

5.4.4 RQ4: comparison with other algorithms

For the comparison of RaQuN against the baseline matchers
NwM, Pairwise Ascending, and Pairwise Descending, we
assess the differences in average runtime and match weight
on each experimental subject. We further evaluate the quality
of matchings in terms of precision, recall, and F-measure
on ArgoUML subsets. Based on our earlier conclusion that
using the high-dimensional vectorization is the preferable
choice (cf. Sect. 5.4.1), we consider RaQuN High Dim as
representative of RaQuN. RaQuN High Dim uses the weight
metric as similarity function, because the baseline matchers
also use the weight metric.

Table 6 presents the average weight and runtime achieved
by the matchers.

RaQuN and Pairwise are significantly faster than NwM.
While, on average, NwM requires between 9s and 75s for the
matching of smaller subjects (< 50 elements) PPU Struc-
ture and Hospital through Tight, the other algorithms are
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able to calculate a matching in less than a second. Match-
ings for bCMS and BCS were calculated by RaQuN and
Pairwise in less than 13s, where NwM required 247s and
330s. Moreover, NwM was not able to provide a matching
for ArgoUML, DAS, APS, APS-TL, MRC, and WEC before
reaching the time-out of 12h, and it took about 90min and
70min for matching Apo-Games and PPU Behavior, respec-
tively. In contrast, RaQuN provides a matching in an average
time of less than 45 minutes for ArgoUML, less than 20 min-
utes for DAS, 71s for Apo-Games, and less than 5 minutes
for the remaining subjects.

When considering the achieved weights, RaQuN deliv-
ers the matchings with the highest weights for all datasets.
NwM delivers higher weights than Pairwise for six of the
eleven datasets. Notably, ascending and descending Pairwise
always yield different weights, which confirms the observa-
tion by Rubin and Chechik that performance of sequential
two-way matchers depends on the order of input models [28].
Moreover, which of the two Pairwise matchers performs bet-
ter changes from subject to subject, making it not possible to
anticipate which order will yield better results.

The comparison of matching quality in terms of precision,
recall, and F-measure is presented in Fig. 6.

First, the precision achieved by the different algorithms
is presented in the leftmost plot of Fig. 6; for NwM, we
only have results for subsets with a size of up to 40%,
because the timeout of 12 hours was reached for larger
subsets. On the subset with only 1% of elements, the match-
ing precision of all approaches lies at roughly 0.1. With
increasing subset size, we note a significant difference in
precision when we compare the n-way and sequential two-
way approaches. Moreover, we can observe a slightly higher
precision for RaQuN in comparison to NwM. The n-way
algorithms deliver more precise matchings because Pairwise
does not consider all possible match candidates for an ele-
ment at once and therefore may form worse matches.

Second, the central plot of Fig. 6 shows the recall achieved
by the algorithms. For all algorithms, the recall first drops
with increasing subset size and then rises again after reaching
a subset size between 30% and 50%, depending on the algo-
rithm. The reason for this is that, according to our ArgoUML
subset generation, the number of elements initially grows
faster than the number of properties of each element. The
latter depends on the occurrence of other types in the model
which may not be included in the sub-model yet. As a conse-
quence, some matches are missed. While this effect is only
barely noticeable for RaQuN, it is prominent for NwM and
Pairwise. The comparably high recall achieved by RaQuN
indicates that the vectorization is able to mitigate this effect.
On the other hand, Pairwise shows a larger drop in recall, as
forming incorrect matches (see precision) can additionally
impair its ability to find all correct matches. To our surprise,
the recall of NwM drops significantly more than the recall
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of Pairwise. We assume that the optimization step of NwM,
which may split already formed matches into smaller ones,
lead to a higher loss in recall.

Lastly, the rightmost plot of Fig. 6 presents the F-measure
achieved by the matchers. Here, we observe that RaQuN
offers the best trade-off between precision and recall across
all ArgoUML subsets.

RaQuN High Dim is significantly faster than NwM on
all subsets, and is almost as fast as two-way matchers on
medium-sized subsets with hundreds of elements. RaQuN
High Dim achieves the highest weights across all subsets
and is able to deliver matchings with the highest precision
and recall on the ArgoUML subsets.

5.4.5 RQ5: scalability with growing input size

As opposed to NwM, RaQuN shows great scaling proper-
ties for models of increasing size, up to the largest models of
our subjects containing more than 10,000 elements in total.
By using a vectorization function that opts for better run-
time, RaQuN Low Dim computes matches even faster than
Pairwise. This is a strong indicator that RaQuN’s typical
scaling behavior is considerably better than its theoretical
worst-case complexity.

The results of our scalability analysis on the ArgoUML
subsets is shown in Fig. 7, which presents the average loga-
rithmic runtimes of the algorithms for each subset size. We
observe that the runtime of NwM increases rapidly with the
subset size. NwM requires more than 60 minutes on average
to compute a matching on the 15% subsets. This confirms that
it is not feasible to match larger models with NwM. In con-
trast, it is still feasible to run RaQuN and Pairwise on the full
ArgoUML models. RaQuN and Pairwise show similar scal-
ing properties, while RaQuN’s absolute runtime depends on
the used vectorization function. For matching the full models
(cf. Table 6), the average runtime of RaQuN High Dim was
less than 45 minutes, making it slower than Pairwise, but still
feasible. On the other hand, the average runtime of RaQuN
Low Dim was less than one minute making it significantly
faster than even the Pairwise matchers.

5.5 Threats to validity
5.5.1 Construct valdity

Our experiments rely on evaluation metrics and algorithm
configurations that may affect the construct validity of the
results. First, we use the weight metric which has already
been used in prior studies [28]. While it can be applied to
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compare the results on the same subject, weights obtained
for different experimental subjects are hardly comparable.
To that end, we use precision and recall [63] in order to asses
the quality of the matchings for the ArgoUML subsets. The
calculation of both depends on our definition of true posi-

tives, false positives, and false negatives. Here, we favored a
pairwise comparison over a direct rating of complete matches
to rate almost correct matches better than completely wrong
matches.

Another potential threat pertains the construction of
ArgoUML subsets. Using unrelated models of different size
would introduce the bias of varying characteristics of these
models. Hence, we decided to remove parts of the largest
available system. While we argue that this is the better choice,
it is possible that the ArgoUML subsets do not represent
realistic models. Moreover, using the product-line variants
of ArgoUML, PPU, BCS, and bCMS as experimental sub-
jects could have introduced a bias because these are derived
from a clean and integrated code base, lacking unintentional
divergence [64—66]. Thus, while it is common in the lit-
erature to use product-line datasets [55,56,67,68] as they
inherently provide ground-truth matchings, we also consid-
ered the clone-and-own system ApoGames.

Lastly, regarding the configuration of RaQuN’s candidate
matching phase (cf. Sect. 5.4.3), we compare the weight met-
ric and Jaccard Index using two configurations of RaQuN that
use the Low Dim vectorization. We use the Low Dim vector-
ization mainly because we could then conduct the experiment
considerably faster. This might introduce a bias to the results,
as the selected candidates depend on the vectorization and
different candidates could lead to different results. However,
as observed in Table 4, both vectorizations lead to compara-
ble matching quality. We thus deem our conclusion to still
hold.

5.5.2 Internal valdity

Computational bias and random effects are a threat to the
internal validity. Other processes on the machine may affect
the runtime, but also the matching may differ in several runs
with the same input. The non-determinism of RaQuN is due
to the use of hash sets used in the implementation. Further-
more, the order in which matches are merged may vary for
identical similarity scores. We mitigated those threats by
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repeating every measurement 30 times, each with a different
permutation of the input models. Additionally, the random
generation of the ArgoUML subsets might have introduced
a bias favoring a particular algorithm. To mitigate this bias,
we sampled 30 subsets for each subset size, totaling in 600
different subsets included in the replication package.

Faults in the implementation may also affect the results.
We implemented several unit tests for each class of RaQuN’s
implementation and manually tested the quality of RaQuN
and the evaluation tools on smaller examples. Additionally,
we resort to the original implementations of NwM and Pair-
wise.

5.5.3 External valdity

The question whether the results generalize to other subjects,
is a threat to the external validity. We mitigate this threat by
our selection of diverse experimental subjects. We used the
experimental subjects from the original evaluation of NwM,
for which Rubin and Chechik have already mitigated this
threat [28]. Moreover, we have experimented with additional
subjects covering (a) different domains, i.e., information sys-
tems (bCMS), industrial plant automation (PPU), automotive
software (BCS), software engineering tools (ArgoUML), and
video games (Apo-Games), (b) different origins, i.e., aca-
demic case studies on model-based software product lines
(PPU, BCS, bCMS), a software product line which has been
reverse engineered from a set of real-world software variants
written in Java (ArgoUML), and a set of variants devel-
oped using clone-and-own (Apo-Games), and (c) different
model types, i.e., UML class diagrams (bCMS, ArgoUML),
SysML block diagrams and UML statemachines (PPU), com-
ponent/connector models (BCS), and Simulink models.

To apply RaQuN as investigated in this paper, models
must first be converted to element/property models. The con-
version is model-type and technology-specific, and requires
domain knowledge in order to select suitable elements and
properties. It also leads to the abstraction of a model’s
structural features (i.e., hierarchies and relationships), which
might no longer yield the information required for it to be use-
ful in the matching process. Furthermore, RaQuN does not
consider already established matches or similarities of ele-
ments that are in a (structural) relationship with the elements
that are to be matched next (e.g., the similarity of parent ele-
ments in a hierarchical structure). Thus , the conversion can
have a negative impact on the matching process, which could
lead to areduction of the overall matching quality. This threat
applies to all considered algorithms, as we evaluate them on
the same element/property models. We partially mitigate this
threat by our selection of various experimental subjects.
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6 Related work

Traditional matchers are two-way matchers which can
be classified into signature-based, similarity-based, and
distance-based approaches. Signature-based approaches match
elements which are “identical” concerning their signature
[69] - typically a hash value which comprises conceptual
properties (e.g., names) or surrogates (e.g., persistent iden-
tifiers). Similarity-based matching algorithms try to match
the most similar but not necessarily equal model elements
[10-14,20]. Distance-based approaches try to establish a
matching which yields a minimal edit distance [15-19,21].
Among these categories, signature-based matching is the
only one which could be easily generalized to the n-way case.
However, the limitations of signatures have been extensively
discussed [11,12,34-36].

A few approaches realize n-way matching by the repeated
two-way matching of the input artifacts [22-27]. However,
as reported by Rubin and Chechik [28] and now confirmed
by our empirical evaluation, this may yield sub-optimal or
even incorrect results as not all input artifacts are considered
at the same time [24,28].

To the best of our knowledge, Rubin and Chechik are the
only ones who have studied the simultaneous matching of
n input models [28]. Their algorithm called NwM applies
iterative bipartite graph matching whose insufficient scala-
bility motivated our research. RaQuN is radically different
from NwM. It is the first algorithm applying index structures
(i.e., multi-dimensional search trees) to simultaneous n-way
model matching (Phase 1 and Phase 2 in Algorithm 1). Even
without these phases, the matching (Phase 3) differs from
NwM by abstaining from bipartite graph-matching, reduc-
ing the worst-case complexity (see Sect. 3.3).

Our usage of multi-dimensional search trees is inspired
by Treude et al. [34]. While they discuss basic ideas of how
model elements can be mapped onto numerical vectors in the
context of two-way matching, the actual matching problem
was not even addressed but delegated to an existing two-way
matcher. Moreover, a dedicated vectorization function needs
to be provided for all types of model elements, while we work
with a vectorization which is domain-agnostic.

All approaches to both n-way and two-way matching
assume matches to be mutually disjoint and that no two ele-
ments of a match belong to the same input model. This is a
reasonable assumption which we adopt in this paper to ensure
the comparability of RaQulN with the state of the art. The
only exception which deviates from this assumption is the
distance-based two-way approach presented by Kpodjedo et
al. [70], which extends an approximate graph matching algo-
rithm to handle many-to-many correspondences. Regarding
the ground truth matchings of our experimental subjects
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obtained from product lines, there is no need for such an
extension of n-way matching algorithms. However, it might
be a valuable extension for some use cases (e.g., for compar-
ing models at different levels of abstraction) which we leave
for future work.

Several approaches which can be characterized as merge
refactoring have been proposed in the context of migrating
a set of variants into an integrated software product line.
Starting from a set of “anchor points” which indicate corre-
sponding elements, the key idea is to extract the common
parts in a step-wise manner through a series of variant-
preserving refactorings [29,43,51,68,71-76]. Anchor points
may be determined through clone detection [43,72-74] or
conventional matchers [29,51,71,75,76], and may be cor-
rected and improved by the merge refactoring. However, such
implicit calculations of optimized n-way matchings require
extensive catalogues of language-specific refactoring opera-
tions which have to be specified manually [51,73—75]. Merge
refactoring approaches are complementary to our approach,
because they require sufficiently accurate matchings to avoid
prohibitive computational efforts during refactoring [51].

Another approach for managing cloned software variants
has been presented by Linsbauer et al. [33,56]. They use
combinatorics of feature configurations to map features to
parts of development artifacts, which implicitly establishes
n-way matchings. Similarly, implicit n-way matchings are
established through extracting product-line architectures as,
e.g., proposed by Assuncao et al. [30]. However, the required
additional information such as complete feature configura-
tions is typically not available.

Finally, Babur et al. [31,32] cluster models in model repos-
itories for the sake of repository analytics. They translate
models into a vector representation to reuse clustering dis-
tance measures. However, clustering is performed on the
granularity level of entire models, while our candidate initial-
ization clusters individual model elements. In fact, as shown
by Wille et al. [77], both may be used complementary by
first partitioning a set of model variants and then performing
a fine-grained n-way matching on clusters of similar models.

7 Conclusion and future work

Model matching is a major requirement in many fields,
including extractive software product-line engineering and
multi-view integration. In this paper, we proposed RaQuN,
a generic algorithm for simultaneous n-way model matching

which scales for large models. We achieved this by indexing
model elements in a multi-dimensional search tree which
allows for efficient range queries to find the most suitable
matching candidates. We are the first to provide a thorough
investigation of n-way model matching on large-scale sub-
jects (ArgoUML) and a real-world clone-and-own subject
(Apo-Games). Compared to the state of the art, RaQuN is
an order of magnitude faster while producing matchings of
better quality. RaQuN makes it possible to adopt simultane-
ous n-way matching in practical model-driven development,
where models serve as primary development artifacts and
may easily comprise hundreds or even thousands of elements.

Our roadmap for future work is threefold. First, we
plan an in-depth investigation of RaQuN’s potential for
domain-specific optimizations. For example, RaQuN could
be adjusted to specific requirements of different application
scenarios and characteristics of different types of models.
Second, RaQuN, Pairwise, and NwM only support matching
one element of a model to at most one element of each other
model (1-to-1). This might limit the possibility to find the cor-
rect matches in certain cases (e.g., an element was split into
several smaller elements). Therefore, from a more general
point of view, we want to extend simultaneous n-way model
matching to support n-to-m matches for which we believe
that RaQuN serves as a promising basis to enter and explore
this new aspect of n-way matching. Third, in accordance with
the state of the art, RaQuN forms mutually disjoint matches.
Therefore, an element belongs to at most one match and no
alternative matches for an element are computed. We plan
on supporting scenarios in which several match proposals
instead of a single exact match for a specific element are
desired (e.g., scenarios in which a user interactively selects
the most suitable match for an element).
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