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Abstract—In clone-and-own – the predominant paradigm for
developing multi-variant software systems in practice – a new
variant of a software system is created by copying and adapting
an existing one. While clone-and-own is flexible, it causes high
maintenance effort in the long run as cloned variants evolve in
parallel; certain changes, such as bug fixes, need to be propagated
between variants manually. On top of the principle of cherry-
picking and by collecting lightweight domain knowledge on cloned
variants and software changes, a recent line of research proposes
to automate such synchronization tasks when migration to a
software product line is not feasible. However, it is yet unclear
how far this synchronization can actually be pushed. We conduct
an empirical study in which we quantify the potential to automate
the synchronization of variants in clone-and-own. We simulate the
variant synchronization using the history of a real-world multi-
variant software system as a case study. Our results indicate
that existing patching techniques propagate changes with an
accuracy of up to 85%, if applied consistently from the start of a
project. This can be even further improved to 93% by exploiting
lightweight domain knowledge about which features are affected
by a change, and which variants implement affected features.
Based on our findings, we conclude that there is potential to
automate the synchronization of cloned variants through existing
patching techniques.

Index Terms—clone-and-own, change propagation, variant
synchronization, version control, software product lines

I. INTRODUCTION

Today’s software is often released in multiple variants to
meet varying customer requirements. While there are systematic
approaches to managing variability, such as software product
lines where all variants are managed using an integrated
platform [1]–[3], these approaches are not feasible for all
projects. Instead, developers fall back to using clone-and-own,
where a new variant of a software system is created by copying
and adapting an existing variant (e.g., using branching/forking
capabilities of a version control system). This way, new variants
are created ad-hoc and without requiring upfront investments
or knowledge about variants required in the future [4]–[7]. In
the long term, however, clone-and-own projects suffer from
ever-increasing maintenance costs for various reasons [4]–[10].
For example, if a bug is discovered and fixed in one variant, it
is often unclear which other variants are affected by the same
bug and how this bug should be fixed in these variants.

Researchers started to explore the continuum between ad-hoc
clone-and-own and software product lines to reduce the burden
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on developers [11]–[17]. The goal of such managed clone-and-
own is to keep the flexibility of clone-and-own while getting
rid of its maintenance problems. In this paper, we focus on a
recent line of research that proposes to manage the development
and maintenance of cloned variants by propagating changes
of interest between them, thereby keeping the cloned variants
synchronized [4], [16]–[20]. Essentially, all of these approaches
rely on a change propagation facility which is based on the
principle of document patching. The changes that occurred
between two revisions of a source variant are represented
as a series of patches which are applied to one or several
target variants. On top of this basic principle, some approaches
advocate to collect additional lightweight domain knowledge
on cloned variants and software changes, with the goal of
automating the synchronization of variants [16], [17], [21],
[22]. However, the synchronization capabilities of the proposed
approaches are still in their infancy and it is yet unclear how
far this synchronization can actually be pushed.

We aim at quantifying the potential to automate the syn-
chronization of variants in clone-and-own through an empirical
study, simulating almost half a billion synchronization scenarios
extracted from the history of a real-world multi-variant software
system as a case study. Specifically, we consider variants
of the software product line BusyBox. BusyBox is a highly
configurable tool suite with a rich history of more than 17,000
commits and a configuration space with more than 10200

different variants [23]. BusyBox is widely used in practice [24]–
[26] and is a common benchmark in research on multi-variant
software systems [27]–[30].

Our study covers three aspects of patch-based variant
synchronization. First, to gain insight on the difficulties of
automated change propagation, we investigate how often
propagating a change via patching succeeds or fails, depending
on different levels of patch granularity (i.e., commit-, file-,
and line-level patches). Second, we examine the correctness
of automated patching by analyzing the outcome of each
synchronization scenario. Due to the differences in the source
code of variants, patches can contain desired and undesired
changes, but not all patches can be applied successfully.
Thus, we are interested in how often the correct outcome
is achieved. Third, we investigate the potential to improve the
correctness of automated synchronization when developers
document lightweight domain knowledge. Specifically, we
employ lightweight domain knowledge about which features



are affected by a change and which variants implement affected
features – knowledge that is generally assumed to be available
but typically undocumented in clone-and-own [9], [15]–[17],
[31], [32]. This way, we can filter undesired patches in an
a-priori fashion, without blindly testing their applicability. In
summary, we have three main contributions:

• We present a framework that simulates the automated
synchronization of variants for almost half a billion
synchronization scenarios.

• We quantify the potential to automate the synchronization
of variants through fully-automated patching by analyzing
applicability and correctness of patches.

• We quantify to which extent automated patching benefits
from utilizing lightweight domain knowledge about which
features are affected by a change and which variants
implement them.

II. BACKGROUND AND MOTIVATION

In this section, we briefly review the state-of-the-art in
engineering multi-variant software systems, with the main goal
of providing the background and motivation for conducting
the empirical study presented in this paper.

A. Software Product Lines

A software product line is a set of similar software variants
(aka., products) with well-defined commonalities and variabil-
ity [1]–[3], developed as a common code base (aka., integrated
software platform). On the abstraction level of requirements, the
commonalities and variability of a target domain are described
in terms of features. Each variant is identified by a unique
combination of features, called a configuration [3]. The set
of valid configurations is typically specified by a feature
model [33]. A product line is implemented by mapping the
features onto implementation artifacts and choosing a variation
mechanism which specifies how to generate individual variants
from the common artifacts (e.g., using preprocessors, build
systems, or plug-ins) [1], [3], [34]. A variant is built by
selecting a desired configuration and deriving the corresponding
implementation from the integrated platform.

B. Ad-Hoc Clone-and-Own

As opposed to software product-line engineering, the state-
of-practice in engineering multi-variant software systems often
follows a radically different pattern: The development starts
with a single variant, where the overhead of product lines does
not pay off. Later, further variants are added by copying and
adapting an existing variant (e.g., by branching or forking), and
all variants evolve in parallel; a principle which is generally
known as clone-and-own [4]–[7].

The clone-and-own workflow is illustrated in Figure 1, using
the development of a simple graph library as an example.
Initially, the library comprises only a single variant, called
v1, which implements simple undirected graphs. Next, this
variant is copied to become variant v2, which implements the
additional feature of graphs having weighted edges. After some
modifications, variant v2 is copied to become variant v3. In
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Fig. 1: Motivating example: Evolution of variants in clone-and-
own (optionally with configurations when managed).

variant v3, graphs are weighted and directed, and the graph
library provides an additional utility function that calculates
the shortest path between any two nodes. Finally, a modified
version of initial variant v1 is copied to become variant v4,
which implements directed graphs, yet without the additional
features weighted and shortest path. Later on, all four variants
evolve in parallel and independently of each other (e.g., due
to local adjustments or bug fixes).

As illustrated in our example, clone-and-own makes it
possible to create new variants in a flexible manner, yielding
a family of related software products without any upfront
investment. However, the flexibility of clone-and-own comes at
a price. Consider, for instance, the creation of variant v4 which
shall implement directed graphs. In ad-hoc clone-and-own, this
leads to redundant implementations of the feature directed,
which has already been implemented in variant v3. As another
example, suppose that a bug has been fixed in revision r2.3
of variant v2. Developers will have to check manually which
other variants are affected by the same bug (here, variant v3).
These are problems that could be solved by automating the
synchronization of variants.

C. Basic Techniques for Synchronizing Variants

The synchronization of variants can be achieved by propa-
gating desired changes from one variant to another. Following
common terminology of version control systems, this is
typically referred to as cherry-picking [35], which is technically
based on the principle of document patching. Changes between
two revisions of a source variant are represented as a patch
(aka. (directed) delta [36], (asymmetric) difference [37], or edit
script [38]), which is applied to a target variant.

Technically, patching is realized by providing two operators,
commonly referred to as diff and patch. These operators rely on
a common representation of the underlying documents which
are to be processed, and on a set of change operations that
can be used to modify these documents. Language-specific
implementations are tailored to the language’s (abstract) syntax,
such as structural diff and patch operators that work on the
abstract syntax tree (AST) of source code. In contrast, language-
agnostic implementations of diff and patch rely on a generic
representation of documents, a prominent example of this being



$ diff -Naur Edge.java_0 Edge.java_1
--- Edge.java_0 2021-10-08 10:07:54
+++ Edge.java_1 2021-10-08 10:07:55
@@ -12,7 +12,8 @@

   boolean equals(Edge e) {
     return source == e.source
-      && target == e.target;
+      && target == e.target
+      && weight == e.weight;
   }

   String toString() {
@@ -20,6 +21,6 @@...

Diff header with 
command and 
file information

First hunk

Second hunk

Fig. 2: Example of a patch with three changes in the first hunk.

the Unix utilities diff and patch [39] which process textual
documents in a line-based manner.

In our study, we use standard and language-agnostic diff
and patch operators as they are widely used in practice and
serve as the basis for implementing cherry-picking in version
control systems such as Git or SVN. A patch comprising the
changes to be propagated is created by diffing the original
and the changed version of a document. An example of a
patch is shown in Figure 2, where the method equals of the
class Edge from the graph library of Figure 1 is extended
to also consider weights. A patch basically consists of a set
of so-called hunks [39]. A hunk describes which changes
(i.e., insertions and deletions of lines) should be made to a
certain text block. Context lines are added around each hunk as
shown in Figure 2 where the changed lines (green and red) are
surrounded by additional lines. A patch operator takes a patch
as input and applies the specified changes to a given target
document, producing a patched version. The patch operator
exploits the context lines when searching for the correct location
in the target file to apply a hunk. Starting from the specified line
number (cf. Figure 2), the operator searches for a matching
context in the target file and applies the patch to the first
matching location. If no match is found, the application fails
and the hunk is written to a reject file.

Notably, cherry-picking based on the principle of patching
is not to be confused with merging [40]. With cherry-picking,
selected changes from selected commits of one branch are ap-
plied to another branch. Merging aims at integrating concurrent
modifications into one unified version. All changes from all new
commits of one branch are applied to the another branch. Thus,
merging is inadequate for synchronizing co-evolving variants;
these are supposed to have differences, whereas merging tries
to get rid of them.

D. Towards Automated Synchronization

Although cherry-picking may serve as a technical basis
for synchronizing cloned variants, its manual application is
tedious and prone to errors [18]. Developers have to manually
determine which changes should be propagated to which
variants. For each potential target variant, developers have
to perform a cherry-pick. Furthermore, the propagation of
changes may technically fail. Since the code bases of cloned
variants exhibit differences, the context of a patch might not
match the desired location in a target variant. For example,

11 ...
12

13 boolean equals(Edge e) {
14 return source == e.source
15 && label == e.label
16 && target == e.target;
17 }
18

19 String getLabel() {
20 ...

Listing 1: Propagating the change from Figure 2 to this variant
of the Edge class featuring labeled edges fails due to a different
context (i.e., Line 3).

applying the change from Figure 2 to a variant with directed,
weighted, and labeled edges, as shown in Listing 1, will fail
because of a non-matching context: The context-line 15 in
Listing 1 does not exist in the patch.

In this paper, we quantify the potential for overcoming
these problems to automate change synchronization. First,
we study how far an automated synchronization is feasible
in real-world clone-and-own where the necessary domain
knowledge of which changes to apply in which target variants is
usually available but undocumented. Second, we investigate to
which degree an automated synchronization is improved when
such lightweight domain knowledge would be documented by
developers in terms of features and configurations.

III. STUDY DESIGN

Our study’s research goal is to quantify the potential
to automate the synchronization of variants for which we
define three research questions. RQ1 quantifies the automation
potential in terms of the general applicability of patches (i.e.,
rate of application without failure). RQ2 quantifies the potential
in terms of how often patching leads to the correct result. RQ3
explores to which extent explicit domain knowledge could
improve the automation potential.

RQ1 (Applicability): Which fraction of changes in a variant
can be propagated blindly to other variants through automated
patching? There are a number of scenarios where trying to
apply a patch to another variant may fail. Such failures are likely
to occur when patching software variants, as variants expose
differences in their code base. Patch application failures could
decrease the potential of automating variant synchronization.
Thus, we want to quantify how many patches can be applied.

Furthermore, the applicability of a patch might also be
affected by its granularity which in turn depends on the number
of changes that happened between two versions of the variant
from which the patch was created. We account for the size
of patches at three levels of granularity: commit-level patches
that contain all changes that were made in a commit, file-level
patches that contain all changes made to a specific file in
a commit, and line-level patches that contain the change of
exactly one line.

RQ2 (Correctness): How often does blindly propagating
changes to other variants lead to the expected patch result?



When quantifying the applicability of a patch (RQ1), we apply
patches blindly to variants without considering whether a patch
contains changes that are desired or undesired in a target variant.
A change is desired in a variant if it affects features that are
implemented by this variant, and undesired if it affects features
that are not implemented by it. Thus, we quantify how often
blindly propagating changes through automated patching leads
to the expected patch result, i.e., all desired but no undesired
changes are propagated.

RQ3 (Domain Knowledge): To what extent can lightweight
domain knowledge improve the correctness of change propaga-
tion? With RQ1 and RQ2, we observe variant synchronization
without domain knowledge – all changes are blindly propagated
to other variants. Both research questions are relevant for
immediately automating variant synchronization in practice,
as they only depend on existing tools without additional
prerequisites. With RQ3, we want to explore to which extent
utilizing lightweight domain knowledge could further improve
the potential to automate variant synchronization. We focus on
domain knowledge about the configurations of variants and the
features that are affected by a code change, as this knowledge
is generally assumed to be available [9], [15], [31], [32]. By
combining this knowledge, it should be possible to determine
whether a change is desired or undesired in a specific target
variant. We hypothesize that we can utilize this knowledge to
filter out all undesired changes (i.e., changes that must not
be applied), which in turn should improve the correctness
of patching. Please note that even if lightweight domain
knowledge is available in a project, we cannot assume that it
is explicitly documented, which means that synchronization
techniques cannot utilize this knowledge immediately in a
real clone-and-own project. Thus, with RQ3, we also quantify
whether making this knowledge explicit is worth the required
effort and cost.

A. Experimental Subject

Requirements for Simulation of Clone-and-Own: Blind
change propagation (RQ1 and RQ2) can be applied to any
software system. Thus, the most basic requirement is that the
subject comprises the evolution history for a set of variants
on which we can simulate patch-based change propagation.
Change propagation with lightweight domain knowledge (RQ3)
requires domain knowledge about the configurations of variants
and the features affected by a change.

Requirements for Evaluation: We can determine the
applicability of patches (RQ1) without additional information.
Besides applicability, we also need to determine the correctness
of a patch result (RQ2 and RQ3), for which we have to know
which changes are desired or undesired in a target variant,
and whether a change has been applied to the correct location.
Desired and undesired changes can be determined by comparing
the affected features with the configuration of the target variant.
Whether a change has been applied to the correct location
requires knowledge about where this patch should have been
applied.

Subject Selection: We found no clone-and-own project that
met the requirements of our study. Thus, we consider variants
stemming from a software product line, which is a common
strategy for obtaining an experimental subject for clone-and-
own research [15], [32], [41], [42]. Specifically, we selected
the software product line BusyBox, a tool suite that contains
standard Unix tools, written in C, for resource-constrained
systems. BusyBox fulfills all requirements specified at the start
of this section. It has a rich history of more than 17 thousand
commits. BusyBox is widely used in practice [24], [26],
[43] and for research on multi-variant software systems [27]–
[29], [44]. Furthermore, BusyBox is highly configurable
and comprises families of program variants, for instance, to
meet platform-specific requirements. BusyBox’ variability is
implemented with C preprocessor directives (#ifdef) and
Kbuild,1 which we can analyze to extract the required domain
knowledge.

B. Extraction of Required Domain Knowledge

We extract the required domain knowledge from BusyBox
with VEVOS’s ground truth extraction module [45], which
analyzes the Kbuild and source files for each commit in
BusyBox’ history with the help of KernelHaven [46], a
plugin-based framework for static product line analysis. For
BusyBox’ analysis, we configured VEVOS to use Kernel-
Haven’s KConfigReader, kbuildminer, and CodeBlock plugins.
KConfigReader [47], analyzes Kbuild’s configuration files
and determines constraints among features, thereby yielding
a feature model needed for sampling variant configurations.
Kbuildminer [48], analyzes Kbuild’s makefiles with respect to
the feature model, in order to determine the presence conditions
of files. CodeBlock [46] parses the source code files and
analyzes the contained preprocessor directives yielding presence
conditions for each line in a file. The presence condition of a
line of code determines in which variants the line should be
included. From presence conditions of changed lines, we can
derive which features are affected by a change, and to which
variants a change should be propagated.

Note that VEVOS’ domain knowledge extraction is only
needed for obtaining a ground truth for evaluation, and the
lightweight domain knowledge required in RQ3. In practice,
this lightweight domain knowledge could be attained with
feature trace recording [17]. The synchronization without
domain knowledge (RQ1 and RQ2) uses existing patching
techniques and could already be applied in any software project
without extracting domain knowledge.

C. Simulation of Automated Variant Synchronization

Once the required domain knowledge is extracted from
BusyBox, we begin the simulation of automated variant
synchronization as presented in Figure 3. In each iteration,

1Kbuild is a build system originally designed for the Linux kernel
that manages variability statically through makefiles that control the build
process (i.e., conditional compilation), and configuration files that define the
active features. Depending on the active features, the makefiles prepare the
environment and call the compiler to compile the source code files which can
also contain variability in form of preprocessor directives.
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Fig. 3: Simulation of automated change synchronization.

we consider a pair of consecutive commits (1), which together
represent one step in the evolution of BusyBox. For each
commit pair, the simulation consists of two steps: First, the
preparation phase in which a set of variants is generated
(cf. Section III-C1); Second, the change propagation phase in
which diffing and patching are applied to simulate automated
synchronization (cf. Section III-C2). Thereby, we simulate
a scenario in which all variants are synchronous until new
changes are introduced to one of the variants. Once the
changes are committed, they are immediately propagated to the
other variants. This corresponds to applying automated change
propagation from the start of a clone-and-own project.

1) Sampling and Generation of Variants: Before we can
generate a variant, we need its configuration in order to
determine which code its source files should contain. BusyBox
1.18.0 comprises 854 features inducing more than 10200 valid
configurations [23]. Hence, considering all possible variants is
not feasible and clone-and-own projects are far smaller with
usually about ten variants [5] (cf. paragraph VI-0b). Therefore,
we sample 10 random configurations (Step 2 in Figure 3).
We sample variants based on the union of the two feature
model versions using VEVOS [45] which internally calls the
FeatureIDE library [49], which in turn contains functionality
for analyzing and manipulating feature models. By analyzing
the constraints that may exist between features, FeatureIDE
can randomly sample valid configurations for a given feature
model.2 We mitigate the bias of random sampling by repeating
the simulation 30 times (which was feasible with respect to
total simulation time) for a commit pair with new variants in
each repetition.

2 For sampling, FeatureIDE uses the Sat4J SAT solver [50]. FeatureIDE’s
developers changed the solver’s variable assignment heuristic for random
sampling: Each variable is randomly set to true or false, and the order in
which variables are set is random. However, configurations still depend on the
rest of the solver’s architecture and are therefore not uniformly distributed.

Once a set of configurations is sampled, we generate variants
by generating their source code files for both commits (Step
3) with VEVOS’ simulation module [45]. The generation is
done by comparing a configuration with the presence condition
of each line in the original BusyBox sources, as done by the
pre-processor directives when BusyBox is built with Kbuild. If
a presence condition is fulfilled according to the active features
in the configuration, the line is copied to the variant’s source
code, otherwise it is discarded.

2) Simulation of Variant Synchronization with diff and
patch: After we generated variants, we start the simulation
of patch-based change synchronization. For exercising diffing
and patching, we use Unix diff and patch, standard tools
being in use for decades (cf. Section II-C). We configure diff
as recommended in the Notes for Patch Senders section of
patch’s documentation (i.e., diff -Naur old new). In
this configuration, diff treats absent files as empty, all files as
text, considers all files in a directory recursively, and collects
three lines of unified context. We use patch in its default
configuration with the forward option that prevents patch
from checking for duplicate applications, which cannot occur in
our controlled simulation. With these configurations, renamed
files are treated as deleted and inserted, and files that are created
in the source variant are also created in the target.

We repeat the simulation (4-9) for all possible source-target
combinations in a set of variants (cf. Figure 3). First, we
select the next source variant VS (i.e., the variant from which
the patch is created) together with its next version V

′

S in
BusyBox’ commit history (Step 4). Then, we apply diff to
the two versions of the source variant yielding the difference
between both versions (Step 5). Next, we split the calculated
difference into line-level patches that are written to a patch file
(Step 6). We consider line-level patches as they are the finest
granularity; thus, they can be combined to represent file-level
and commit-level patches. Afterwards, we select the next target
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variant VT (Step 7) to which we apply each line-level patch
by calling patch with the patch file as argument (Step 8).
Once the patches are applied, we evaluate the applicability
and correctness of the patches (cf. Section III-D) (Step 9),
and continue with the next target variant (Step 7). If there
are no more target variants left, we consider the next source
variant (Step 4). After all combinations have been considered,
a new set of random variants is sampled and generated (Steps
2-3). We repeat the entire process (Steps 1-9) 30 times for
each commit pair to cover a broad spectrum of the possible
configurations.

For RQ3, we additionally filter out all changes that should
not be propagated. A change is filtered if the features affected
by it are not implemented in the target variant. Therefore,
Step 6 can be followed by the additional filtering of line-level
patches as an optional step (6-O).

D. Evaluation Metrics

We measure the applicability of patches by counting the
number of patches that are applied by patch without failure.
Unix patch logs all failed patches and writes failed hunks
(see Section II-C) to a file which we then parse to determine
failed patches. We consider a patch as failed if at least one of
its changes is not propagated to the target variant.

We measure the correctness of patches in two phases which
are shown in Figure 4. In the first phase (left), we determine
the sets of desired changes (i.e., should be propagated) and
undesired changes (i.e., must not be propagated). The phase
starts with the retrieval of two change sets by applying diff
to the two versions of the source variant and to the two versions
of the target variant. The calculated change sets are (1) the
changes in the evolution of the source variant (i.e., the changes
in all considered patches), and (2) the changes in the evolution
of the target variant (i.e., the changes that are expected). The
intersection of both sets determines the desired changes, while
changes that occurred only in the source variant are undesired.
Changes that occurred only in the target variant are not of
interest for our synchronization scenario as they did not occur
in the source variant and thus cannot be propagated (i.e.,
irrelevant changes). Rather, they model parallel development
whose behavior is out of the scope of this study.

The second phase of the evaluation (right of Figure 4) starts
once all patches have been applied. To measure the correctness

of patching, we observe the difference between the target
variant after patching V Patched

T (i.e., the actual result) and the
target variant in its next evolution stage V

′

T (i.e., the expected
result). By diffing V Patched

T and V
′

T we obtain a set of all
changes that have to be applied to complete the evolution of the
patched target variant V Patched

T to become V
′

T . A change in this
set is either a desired change that was not applied, an undesired
change that was applied, or a change that only occurs in the
evolution of the target (i.e., an irrelevant change). By comparing
the obtained sets, we can calculate true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).

Desired changes that do not appear in the observed difference
are counted as true positives (TP) as these changes were
correctly applied. Undesired changes that are part of the
observed difference are counted as false positives (FP) as these
changes were applied but should not have been. Undesired
changes that do not appear in the observed difference are
counted as true negatives (TN) as these changes should not be
applied and were not. Finally, desired changes that appear in
the observed difference are counted as false negatives (FN) as
these changes should have been applied but were not.

The remaining differences that were not classified as TP,
FP, TN, or FN, are irrelevant changes and can therefore be
ignored as described above. Once TPs, FPs, TNs, and FNs
are determined, we calculate precision, recall and balanced
accuracy [51]. We choose balanced accuracy over normal
accuracy because it mitigates the bias of unbalanced data.
We have to account for unbalanced data, because the sets of
applied and failed patches, as well as the sets of desired and
undesired changes can be of arbitrary size.

For RQ3, we repeat our simulation with domain knowledge
but we require no additional metrics as we evaluate the
correctness of patch results as we do for RQ2. Hence, we
have gathered all the data, tools, and metrics that are necessary
to run and evaluate our simulation (cf. Section III-C).

IV. QUANTIFICATION OF AUTOMATION POTENTIAL

We implemented the simulation of automating the synchro-
nization of variants generated from BusyBox as described in
Section III-C2 in Java.3 Our extraction of the required domain
knowledge processes all commits in the history of BusyBox,
which comprised a total of 17,711 commits when we ran the
variability extraction (newest commit: 83e20cb81ca6d22a). We
were able to extract domain knowledge for the 5,605 most
recent commits (oldest commit: b276e41835161234). We could
not consider older commits, because these commits did not
contain all Kbuild files required by KernelHaven. Nevertheless,
the commits considered in our study comprise more than 10
years of development (Aug 2010 - Sep 2021).

We simulate the synchronization of variants for these
5,605 commits of BusyBox. In total, the simulation processes
9,667,506 commit-level patches, 17,706,045 file-level patches,
and 498,359,460 line-level patches.

3The full replication package can be found on Zenodo [52] and GitHub:
https://github.com/VariantSync/SyncStudy

https://github.com/VariantSync/SyncStudy
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A. (RQ1) Applicability of Blindly Propagated Changes

Figure 5 presents the applicability of commit-level, file-
level, and line-level patches. Failures occur when the context
of a patch cannot be found due to differences in the code
base of source and target variant as explained in Section II-C.
Interestingly, most patches are applicable though.

The applicability of commit-level patches depends on the
distribution of changes across commits. For instance, if each
commit in the history contains at least one change that cannot
be applied, the applicability of commit-level patches would
be zero percent. Vice versa, if only one commit contains all
changes that cannot be applied, the applicability would be
almost perfect. Thus, our results show, that most commits
(61.0%) contain only changes that can be applied without
failure. This is also the case for the applicability of file-level
patches, as most changed files (66.8%) contain only changes
that can be applied without failure. Finally, the applicability
of line-level patches is equivalent to how many changes are
applied as each line-level patch comprises exactly one change
in terms of text-based diffing. 77.3% of all line-level patches
and thus changes can be applied without failure.

We believe that the high applicability of patches is a first
indicator that there is potential to automate the synchronization
of variants through diffing and patching. If most commit-level
patches can be applied automatically, developers have to deal
with failed patches less frequently. Moreover, based on our
own experience, we suppose that it is easier for a developer
to deal with failed patches, if only some of the changed files
lead to failed patches.

Patches fail due to differences in the code base of variants
but 61.0% of commit-level, 66.8% of file-level patches, and
77.3% of line-level patches are applicable. Most commits to
a variant can be propagated without manual effort. Moreover,
most changed files contain only applicable changes, which
should reduce the effort to manually handle failures.
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Fig. 6: Classification of results for applicable and failed patches.
The applicable patches (left) and the failed patches (right)
correspond to the patches in Figure 5 (c). (RQ2)

B. (RQ2) Correctness of Blindly Propagated Changes

Some of the applicable patches might contain undesired
changes, and not all failed patches are desired. Thus, to
determine the correctness of blindly propagating changes
through patching, we investigate the outcome of applicable
and failed line-level patches. Figure 6 presents a breakdown of
applicable and failed patches into five types of patch outcomes,
which we observe during the evaluation of results. The five
types fall into TP, FN, FP, and TN (cf. Section III-D):

• correct (TP): desired changes that were applied to the
correct location by an applicable patch.

• wrong location (FN): desired changes that were applied
to the wrong location by an applicable patch.

• invalid (FP): undesired changes that were applied.
• missing (FN): desired changes that were not applied due

to technical failure.
• not required (TN): undesired changes that were not applied

due to technical failure.
Of the 385,005,117 applicable line-level patches (left side

in Figure 6) 87.6% (337,277,497) are applied correctly (TP),
8.0% (30,803,397) are invalid (FP), and 4.4% (16,924,223)
are applied to the wrong location (FN). At the same time,
most of the failed patches (right side in Figure 6) are actually
undesired changes. Of the 113,354,346 failed patches 93.7%
(106,259,202) are undesired, and 6.3% (7,095,141) are missing
patches that were desired.

This distribution reveals that most applicable patches (92%)
contain desired changes, and that almost all desired changes
that are applied, are applied to the correct location in the
source code. For desired changes that were applied to the
wrong location, we cannot say with certainty whether they
were applied correctly or not. Even if the changes were not
applied to exactly the same location as seen in the evolution of
the target variant (syntactic difference), the target variant’s code
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(RQ2+3)

might still function as intended (semantic equivalence). We
apply a conservative classification of such changes as incorrect
(i.e., counting them as false negatives) to mitigate the bias
caused by desired patches being applied incorrectly.

Table I shows the resulting values for precision, recall, and
balanced accuracy. For now, we concentrate on the results
shown in the first row, leaving the second row for our discussion
of RQ3. The fully-automated application of diff and patch
for variant synchronization achieves a precision of 0.92, recall
of 0.93, and balanced accuracy of 0.85. The high precision
shows that almost all applied patches were applied correctly,
and the high recall that it was possible to propagate most
desired changes without failure.

Our quantification of applicability and correctness shows
that simple text-based diffing and patching provides a solid
foundation for the automation of variant synchronization.
Almost all propagated changes are also desired, and almost
all desired patches can be applied. Thus, a majority of patches
yield the correct result (balanced accuracy: 0.85).

C. (RQ3) Utilizing Domain Knowledge

In RQ3, we hypothesized that it should be possible to filter
out undesired changes when lightweight domain knowledge is
available. As a result, the correctness of automated patching
should improve. Figure 7 presents the percentages of TPs, FPs,
TNs, and FNs of patching blindly (RQ2) against patching with
lightweight domain knowledge (RQ3). Our results presented
in the second row of Table I show that a majority of undesired
changes can be filtered. We are able to reduce the number of
false positives by more than 20 million which is a reduction
of 65%; 10,672,027 false positives remain.

By inspecting false positives, we found that they occur when
the code which is to be propagated by a patch already exists in
the target variant. In our simulation, which considers variants
generated from BusyBox, this scenario can occur if the presence
condition of code in BusyBox changes. Changing the presence

condition alters the set of variants that contain the code. As a
result, code can be added to a variant that is already present
in other variants; the addition is still propagated to all variants
that fulfill the presence condition and variants can receive code
which they already contain.

This is a realistic scenario in a clone-and-own project.
Imagine a synchronization mechanism is already in place
in such a project, and a developer decides that a feature
implemented in other variants is required in the variant they are
working on; thus, they copy the code implementing this feature
to their variant manually. In this case, the synchronization
mechanism could classify this code as newly added and could
try to propagate it back to the variant where it was copied from.
This is a problem that cannot be solved with only lightweight
domain knowledge about the features that are affected by a
change, and knowledge of the configurations.

Besides the reduction of false positives, we also observe a
slight increase in the number of true positives. We believe that
this improvement is due to the reduced number of undesired
changes being propagated, thus, the likelihood of propagating
a desired change correctly increases.

Patching with lightweight domain knowledge presents an
improvement over patching blindly, as it is possible to filter
out the majority of undesired changes. While it is not possible
to filter all undesired changes, precision still increases from
0.92 to 0.97, and balanced accuracy from 0.85 to 0.93.

D. Discussion

We find that the simple mechanisms of diffing and patching
exhibit potential to automate the synchronization of variants, if
the automation is used consistently from the start of a project. In
this setting, even blindly propagating patches to other variants
achieves high precision and recall of above 90%. This suggests
that the very applicability of a patch could be a useful indicator
to estimate if that patch should be propagated to another variant
in case domain knowledge is lost or otherwise unavailable. We
find that most commits to a variant can be propagated to
other variants without failure. Thus, developers do not have
to frequently resolve failed patches. Furthermore, if failures
occur, they only concern some of the changed files, which
should reduce the difficulty of resolving the failures.

With respect to precision and recall, we believe that im-
proving the precision of automated patching is considerably
more important than improving the (high) recall. Why? The
majority of false negatives is the result of failed patches that are
explicitly documented during the automated patch application
and can therefore be easily investigated by developers. In
contrast, false positives are the result of undesired changes
having been applied silently. Thus, a developer would have
to analyze the code after patching. This fuels distrust in any
synchronization tool with insufficient precision, as developers
can never be sure no corruption occurred and always have to
perform a manual check.

Finally, we found that gathering lightweight domain knowl-
edge in form of configurations and the features affected by a



TABLE I: Precision, recall, and balanced accuracy of patching with and without domain knowledge.

Research Patching with TP FP TN FN Precision Recall Balanced
question domain knowledge? Accuracy

RQ2 ✗ 337,277,497 30,803,397 106,259,202 24,019,364 0.92 0.93 0.85
RQ3 ✓ 337,681,325 10,672,027 126,390,572 23,615,536 0.97 0.93 0.93

change improves the accuracy of automation from 85% to 93%,
as undesired changes can be filtered. We suppose, that this
improvement is worth the cost of documenting this knowledge
explicitly. Investigating the remaining false positives revealed
that tools with the aim of automating variant synchronization
have to account for manual copying of code between variants,
which poses an interesting challenge for future work. To solve
this problem, more domain knowledge (e.g., the presence
conditions for all code) might be required. Thus, variant
synchronization tools should focus on retrieving or explicitly
documenting domain knowledge.

V. THREATS TO VALIDITY

a) Construct Validity: We assess the correctness of a patch
based on the difference between the expected outcome and the
observed outcome. Thus, we do not account for dependencies
between applicable and failed patches. For instance, a number
of patches that were applied correctly (true positives) might add
code that depends on code changed by patches that were not
applied (false negatives). However, there is a clear indication
of a patch failing; developers will know that changes are
missing and can fix broken dependencies. Thus, we decided
that considering only the difference between observed and
expected outcome is the best approach.

Our study design does not explicitly differentiate between
changes to source code that is the same across all variants
and source code that has differences (i.e., variability). Our
results might be biased by the degree of variability in the
variants, as only changes to source files with variability can
lead to invalid or missing changes (cf. Section IV-B). However,
we are interested in the automation potential, regardless of
whether source code is common or variable. Moreover, we
argue that BusyBox inherently comprises more variability than
clone-and-own projects, because BusyBox comprises hundreds
of features inducing huge numbers of valid configurations (i.e.,
854 features and 10200 configurations in version 1.18.0 [23]).
We repeat the simulation 30 times with different variants for
each commit; hence, we cover considerably more possible
configurations (i.e., up to 300 for each commit) than can be
expected in a typical clone-and-own project.

The configuration of diff and patch (cf. Section III-C)
might impact the outcome of the patch application. We have
not tried to optimize the configuration to yield the best possible
results, but instead simply chose the configuration of diff
recommended in patch’s official documentation, and the
default configuration of patch. We believe that this is the
best approach, because (a) the default configurations are likely
the ones that are commonly used in practice, and (b) any
optimization might result in overfitting to variants of BusyBox,
which would threaten the generalizability of our results.

b) Internal Validity: To extract domain knowledge, we use
VEVOS which uses other third party tools (i.e., KernelHaven,
KConfigReader, kbuildminer, CodeBlock). VEVOS and the other
tools might have bugs that result in incorrect or only partial
domain knowledge being extracted, and BusyBox undergoes
additional preprocessing by KernelHaven. We generate variants
based on this domain knowledge and the preprocessed source
code. This might lead to a bias in our study, as the variants
might differ from BusyBox’ actual variants (i.e., variants
generated based on correct and complete domain knowledge
without preprocessing). However, extracting domain knowledge
from BusyBox with KernelHaven is the best possible option,
as we found no other tools that provide the required data in
an accessible format. Furthermore, the variants are generated
based on the extracted domain knowledge that is also used
to evaluate the outcome of patching. Hence, there should be
no discrepancies in the evaluation. Furthermore, we manually
sampled and validated the extracted domain knowledge of
several dozen commits.

Potential bugs in the implementation of our simulation (cf.
Figure 3) pose another threat to internal validity. To mitigate
this threat, we applied extensive manual and automated testing
and code reviews to validate the correctness of our tooling.
Moreover, we manually inspected patch results during testing
to confirm that they are evaluated as intended.

Finally, we randomly select variants through non-uniform
random sampling with FeatureIDE. This might bias our results,
because random variants might not be representative, and the
same variant might be sampled more than once. However, we
only sample valid variants from BusyBox’ huge configuration
space, for which it is unlikely that the same variant is sampled
twice. To further mitigate the bias of random variants, we repeat
the simulation 30 times for each commit while considering 10
variants at a time.

c) External Validity: Considering just a single subject
system threatens the external validity of our results. However,
BusyBox has an extensive history with over 5,000 commits
for which the required domain knowledge could be extracted.
In total, our quantification is based on the simulation of almost
half a billion patch applications. Thereby, we cover a broad
spectrum of possible synchronization scenarios.

BusyBox is a software product line and not a clone-and-
own system. Thus, the variants of BusyBox do not expose
unintentional divergence by construction [19], [53], [54]: Code
common to multiple variants is always exactly the same in
all variants. However, we consider a scenario in which the
synchronization of variants is automated from the start of a
project; variants are synchronized as soon as new changes
are committed. In this scenario, unintentional divergences
only occur, if developers do not handle incorrect or missing



changes during automated patch application. We found no
suitable approach to simulate unintentional divergences without
introducing additional threats to validity.

As BusyBox is a software product line, its history does
not reflect concurrent changes to variants that could lead to
conflicts during change propagation; any conflict reduces the
applicability. This is a potential bias in our results, because
concurrent changes are possible in real clone-and-own projects.
However, we are not aware of any suitable simulation strategy
for concurrent changes. Depending on a chosen strategy, the
impact of concurrent modification could range from no changes
having a conflict (i.e., observed applicability) to all changes
having a conflict (i.e., zero applicability). We concluded that
any bias of simulating concurrent changes is greater than
the bias of not simulating them. Moreover, conflicts may
occur in any project and we consider solving them to be
orthogonal to solving the problems that are typically faced
when synchronizing variants (cf. Section II-D).

VI. RELATED WORK

While general approaches of how to transition from ad-hoc
to managed clone-and-own have been already considered in
Section II, we review related work that reports about empirical
studies on change propagation and clone-and-own.

a) Empirical Studies on Change Propagation: Recent
research on managed clone-and-own has suggested to synchro-
nize co-evolving variants using a dedicated change propagation
operator based on the principle of document patching [4], [16]–
[20]. However, the proposed operators have been only described
conceptually [4], [16], [17], or they have been implemented
as early research prototypes whose applicability is yet limited
to academic examples [18]–[20].

With goals and assumptions different from ours, change
propagation has been extensively studied in the context of
single-variant systems [55]–[59]. Here, change propagation
refers to the maintenance task of propagating evolutionary
changes (e.g., to an interface) to other parts of the same system
(e.g., all clients using that interface). Both the problem itself as
well as envisioned solutions are fundamentally different from
our context of managed clone-and-own.

b) Empirical Studies on Clone-and-Own: Cloning in the
large has been investigated in an empirical study by Dubinsky
et al. [5]. They investigate the cloning culture in six industrial
clone-and-own. Their main goal is to identify the perceived
advantages and disadvantages of clone-and-own. In particular,
they identified several practical benefits of clone-and-own from
an organizational point of view, notably simplicity, availability,
and independence of developers. These benefits have been
confirmed by other experience reports and exploratory studies
on clone-and-own in practice [60], [61]. However, none of these
studies has put an emphasis on investigating the synchronization
of cloned variants through change propagation.

Cloning as a small-scale phenomenon in single-variant sys-
tems has been studied in the context of clone management [62],
[63]. Interestingly, similar to recognizing the benefits of clone-
and-own in the large, several researchers provide empirical

evidence that the goal of reaching redundancy-freedom by
eliminating code clones is not always desirable [64]–[67]. While
their results are paving interesting research directions on how
to manage code clones in the small, they do not provide any
insights on how to manage cloned variants.

Studies that, like ours, simulate the evolution of a multi-
variant system are widespread within the research in this field.
In particular, methodologies and techniques supporting clone-
and-own have been evaluated by generating a set of variants
from an existing software product line [15], [32], [41], [42],
[68]–[71], or by using existing clones and their revision history
as experimental subjects [15], [21], [72], [73]. All of these
studies have evaluated techniques that support the migration
of cloned variants into an integrated platform, with a specific
emphasis on the preparatory steps of variability mining [15],
[32], [69], [70], [73] and feature location [21], [71]. However,
as argued in [16], migrating a set of cloned variants into
product line is out of the scope of our envisioned paradigm of
supporting clone-and-own, where cloned variants are supposed
to co-exist and synchronized through change propagation.

VII. CONCLUSION

In this work, we quantified the potential of propagating
changes between cloned variants in a clone-and-own software
system automatically. Therefore, we empirically inspected
almost half a billion patch scenarios derived from a large-
scale real-world system, namely BusyBox.

We found that the majority of patches is applicable automat-
ically, even when propagating changes blindly across variants.
In fact, the very applicability of patches proves to be a useful
indicator for determining if a target variant should actually
receive a patch or not. Moreover, blind patching produces
correct results in the majority of cases with an accuracy of
85% and precision of 92%.

We confirmed the hypothesis of a recent line of research
that gathering lightweight domain knowledge in form of
configurations (i.e., knowing the features implemented in each
variant) and features affected by a change might prove useful
for automated synchronization. If automated patching with
lightweight domain knowledge is applied from the start of a
project, variants can be synchronized with high accuracy (93%)
and almost perfect precision (97%).

In conclusion, existing patch techniques achieved good
results on simulated variants of BusyBox, and have the potential
to automate the synchronization of variants in clone-and-own.
A potential that is further increased by lightweight domain
knowledge. In the future, we will investigate to which extent
this potential can be utilized in other projects.
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Variants in an Open-Source Firmware Project,” in Proc. Int’l Conf. on
Software Maintenance and Evolution (ICSME). IEEE, Sep. 2015, pp.
151–160.

[8] R. Lapeña, M. Ballarin, and C. Cetina, “Towards Clone-and-Own Support:
Locating Relevant Methods in Legacy Products,” in Proc. Int’l Systems
and Software Product Line Conf. (SPLC). New York, NY, USA: ACM,
2016, pp. 194–203.

[9] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and A. Egyed, “Using
Traceability for Incremental Construction and Evolution of Software
Product Portfolios,” in Proc. Int’l Symposium on Software and Systems
Traceability (SST). Piscataway, NJ, USA: IEEE, 2015, pp. 57–60.

[10] T. Kehrer, “Calculation and Propagation of Model Changes Based on User-
Level Edit Operations: A Foundation for Version and Variant Management
in Model-Driven Engineering,” Ph.D. dissertation, University of Siegen,
Germany, 2015.

[11] W. Mahmood, D. Strueber, T. Berger, R. Laemmel, and M. Mukelabai,
“Seamless Variability Management With the Virtual Platform,” in Proc.
Int’l Conf. on Software Engineering (ICSE). Piscataway, NJ, USA:
IEEE, 2021, pp. 1658–1670.

[12] G. K. Michelon, “Evolving System Families in Space and Time,” in
Proc. Int’l Systems and Software Product Line Conf. (SPLC). New
York, NY, USA: ACM, 2020, pp. 104—-111. [Online]. Available:
https://doi.org/10.1145/3382026.3431252

[13] J. Krüger and T. Berger, “An empirical analysis of the costs of clone- and
platform-oriented software reuse,” in Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE). New York,
NY, USA: ACM, 2020, pp. 432–444.
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